{"title":"考虑季节性天气影响的风力涡轮机可靠性分析","authors":"Rui Zheng, Yanying Song, Haojun Fang","doi":"10.1177/1748006x241235727","DOIUrl":null,"url":null,"abstract":"The failure rate of wind turbines shows obvious fluctuation due to seasonal environmental factors. However, few efforts have been devoted to modeling the seasonal failure rate. This paper develops a novel model that consists of a baseline failure rate function, seasonal indices, and a residual term to describe the monthly failure rate of wind turbines. A two-stage procedure is developed to estimate the 16 unknown parameters in the model. The first stage explores the relationship between the parameters in the baseline function and the monthly coefficients by maximum likelihood estimation and then integrates the properties into the genetic algorithm to estimate the main parameters. In the second stage, the variance of the residual term is estimated based on the analysis of the differences between the observed and predicted failure rates. The failure history of 48 months has been used to illustrate the proposed approach. The results show that the monthly failure rate function can well fit the real failure history of wind turbines, and it outperforms the traditional reliability model.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":"30 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability analysis of wind turbines considering seasonal weather effects\",\"authors\":\"Rui Zheng, Yanying Song, Haojun Fang\",\"doi\":\"10.1177/1748006x241235727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The failure rate of wind turbines shows obvious fluctuation due to seasonal environmental factors. However, few efforts have been devoted to modeling the seasonal failure rate. This paper develops a novel model that consists of a baseline failure rate function, seasonal indices, and a residual term to describe the monthly failure rate of wind turbines. A two-stage procedure is developed to estimate the 16 unknown parameters in the model. The first stage explores the relationship between the parameters in the baseline function and the monthly coefficients by maximum likelihood estimation and then integrates the properties into the genetic algorithm to estimate the main parameters. In the second stage, the variance of the residual term is estimated based on the analysis of the differences between the observed and predicted failure rates. The failure history of 48 months has been used to illustrate the proposed approach. The results show that the monthly failure rate function can well fit the real failure history of wind turbines, and it outperforms the traditional reliability model.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x241235727\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x241235727","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Reliability analysis of wind turbines considering seasonal weather effects
The failure rate of wind turbines shows obvious fluctuation due to seasonal environmental factors. However, few efforts have been devoted to modeling the seasonal failure rate. This paper develops a novel model that consists of a baseline failure rate function, seasonal indices, and a residual term to describe the monthly failure rate of wind turbines. A two-stage procedure is developed to estimate the 16 unknown parameters in the model. The first stage explores the relationship between the parameters in the baseline function and the monthly coefficients by maximum likelihood estimation and then integrates the properties into the genetic algorithm to estimate the main parameters. In the second stage, the variance of the residual term is estimated based on the analysis of the differences between the observed and predicted failure rates. The failure history of 48 months has been used to illustrate the proposed approach. The results show that the monthly failure rate function can well fit the real failure history of wind turbines, and it outperforms the traditional reliability model.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome