{"title":"利用金盏花和椴树提取物绿色合成 MnO2 以应用于超级电容器","authors":"Borislava Mladenova, Katya Pashova, Ivaylo Hinkov, Mariela Dimitrova, Antonia Stoyanova","doi":"10.1007/s00706-024-03179-3","DOIUrl":null,"url":null,"abstract":"<p>Green synthesis of MnO<sub>2</sub> was carried out using natural extracts of <i>Tilia cordata</i> (TC) and <i>Calendula officinalis</i> (CO). Utilizing the transmission electron microscopy, powder X-ray diffraction, and UV–Vis spectra techniques confirmed the successful synthesis of α-MnO<sub>2</sub>. The BET analysis showed that the CO-derived material has a larger surface area and appropriate mesoporous structure. The obtained synthesized materials were assembled in asymmetric supercapacitor test cell, with a polymer membrane serving as a separator and an electrolyte. The prepared CO-MnO<sub>2</sub> demonstrates excellent capacitance and energy characteristics and seems to be a promising electrode material for the development of environmentally friendly solid-state supercapacitors.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19011,"journal":{"name":"Monatshefte für Chemie / Chemical Monthly","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of MnO2 using Calendula officinalis and Tilia cordata extracts for application in supercapacitors\",\"authors\":\"Borislava Mladenova, Katya Pashova, Ivaylo Hinkov, Mariela Dimitrova, Antonia Stoyanova\",\"doi\":\"10.1007/s00706-024-03179-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Green synthesis of MnO<sub>2</sub> was carried out using natural extracts of <i>Tilia cordata</i> (TC) and <i>Calendula officinalis</i> (CO). Utilizing the transmission electron microscopy, powder X-ray diffraction, and UV–Vis spectra techniques confirmed the successful synthesis of α-MnO<sub>2</sub>. The BET analysis showed that the CO-derived material has a larger surface area and appropriate mesoporous structure. The obtained synthesized materials were assembled in asymmetric supercapacitor test cell, with a polymer membrane serving as a separator and an electrolyte. The prepared CO-MnO<sub>2</sub> demonstrates excellent capacitance and energy characteristics and seems to be a promising electrode material for the development of environmentally friendly solid-state supercapacitors.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19011,\"journal\":{\"name\":\"Monatshefte für Chemie / Chemical Monthly\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte für Chemie / Chemical Monthly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00706-024-03179-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Chemie / Chemical Monthly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00706-024-03179-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green synthesis of MnO2 using Calendula officinalis and Tilia cordata extracts for application in supercapacitors
Green synthesis of MnO2 was carried out using natural extracts of Tilia cordata (TC) and Calendula officinalis (CO). Utilizing the transmission electron microscopy, powder X-ray diffraction, and UV–Vis spectra techniques confirmed the successful synthesis of α-MnO2. The BET analysis showed that the CO-derived material has a larger surface area and appropriate mesoporous structure. The obtained synthesized materials were assembled in asymmetric supercapacitor test cell, with a polymer membrane serving as a separator and an electrolyte. The prepared CO-MnO2 demonstrates excellent capacitance and energy characteristics and seems to be a promising electrode material for the development of environmentally friendly solid-state supercapacitors.