{"title":"具有最佳奇周期自相关幅度的四元序列的四元复杂性","authors":"Xiaoyan Jing, Zhefeng Xu","doi":"10.1007/s00200-024-00647-5","DOIUrl":null,"url":null,"abstract":"<p>Based on the inverse Gray mapping and sign alternation transform, a new family of quaternary sequences with optimal odd-periodic autocorrelation magnitude has been constructed by using the Legendre sequence pair, twin-prime sequence pair and GMW sequence pair. In this paper, we use the correlation properties of the Legendre sequence pair, twin-prime sequence pair and GMW sequence pair to determine the lower bound of 4-adic complexity of these quaternary sequences, as well as show that these quaternary sequences have large 4-adic complexity.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":"25 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 4-adic complexity of quaternary sequences with optimal odd-periodic autocorrelation magnitude\",\"authors\":\"Xiaoyan Jing, Zhefeng Xu\",\"doi\":\"10.1007/s00200-024-00647-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the inverse Gray mapping and sign alternation transform, a new family of quaternary sequences with optimal odd-periodic autocorrelation magnitude has been constructed by using the Legendre sequence pair, twin-prime sequence pair and GMW sequence pair. In this paper, we use the correlation properties of the Legendre sequence pair, twin-prime sequence pair and GMW sequence pair to determine the lower bound of 4-adic complexity of these quaternary sequences, as well as show that these quaternary sequences have large 4-adic complexity.</p>\",\"PeriodicalId\":50742,\"journal\":{\"name\":\"Applicable Algebra in Engineering Communication and Computing\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Algebra in Engineering Communication and Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00200-024-00647-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00200-024-00647-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The 4-adic complexity of quaternary sequences with optimal odd-periodic autocorrelation magnitude
Based on the inverse Gray mapping and sign alternation transform, a new family of quaternary sequences with optimal odd-periodic autocorrelation magnitude has been constructed by using the Legendre sequence pair, twin-prime sequence pair and GMW sequence pair. In this paper, we use the correlation properties of the Legendre sequence pair, twin-prime sequence pair and GMW sequence pair to determine the lower bound of 4-adic complexity of these quaternary sequences, as well as show that these quaternary sequences have large 4-adic complexity.
期刊介绍:
Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems.
Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology.
Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal.
On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.