通过贝叶斯方法对线性模型进行稀疏估计 $$^*$$

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"通过贝叶斯方法对线性模型进行稀疏估计 $$^*$$","authors":"","doi":"10.1007/s00180-024-01474-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper considers the sparse estimation problem of regression coefficients in the linear model. Note that the global–local shrinkage priors do not allow the regression coefficients to be truly estimated as zero, we propose three threshold rules and compare their contraction properties, and also tandem those rules with the popular horseshoe prior and the horseshoe+ prior that are normally regarded as global–local shrinkage priors. The hierarchical prior expressions for the horseshoe prior and the horseshoe+ prior are obtained, and the full conditional posterior distributions for all parameters for algorithm implementation are also given. Simulation studies indicate that the horseshoe/horseshoe+ prior with the threshold rules are both superior to the spike-slab models. Finally, a real data analysis demonstrates the effectiveness of variable selection of the proposed method.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse estimation of linear model via Bayesian method $$^*$$\",\"authors\":\"\",\"doi\":\"10.1007/s00180-024-01474-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This paper considers the sparse estimation problem of regression coefficients in the linear model. Note that the global–local shrinkage priors do not allow the regression coefficients to be truly estimated as zero, we propose three threshold rules and compare their contraction properties, and also tandem those rules with the popular horseshoe prior and the horseshoe+ prior that are normally regarded as global–local shrinkage priors. The hierarchical prior expressions for the horseshoe prior and the horseshoe+ prior are obtained, and the full conditional posterior distributions for all parameters for algorithm implementation are also given. Simulation studies indicate that the horseshoe/horseshoe+ prior with the threshold rules are both superior to the spike-slab models. Finally, a real data analysis demonstrates the effectiveness of variable selection of the proposed method.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01474-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01474-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文考虑了线性模型中回归系数的稀疏估计问题。我们提出了三种阈值规则,并比较了它们的收缩特性,还将这些规则与通常被视为全局局部收缩先验的流行的马蹄先验和马蹄+先验进行了串联。我们得到了马蹄先验和马蹄+先验的层次先验表达式,并给出了用于算法实现的所有参数的全条件后验分布。模拟研究表明,带有阈值规则的马蹄先验/马蹄+先验都优于尖峰板模型。最后,实际数据分析证明了所提方法在变量选择方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse estimation of linear model via Bayesian method $$^*$$

Abstract

This paper considers the sparse estimation problem of regression coefficients in the linear model. Note that the global–local shrinkage priors do not allow the regression coefficients to be truly estimated as zero, we propose three threshold rules and compare their contraction properties, and also tandem those rules with the popular horseshoe prior and the horseshoe+ prior that are normally regarded as global–local shrinkage priors. The hierarchical prior expressions for the horseshoe prior and the horseshoe+ prior are obtained, and the full conditional posterior distributions for all parameters for algorithm implementation are also given. Simulation studies indicate that the horseshoe/horseshoe+ prior with the threshold rules are both superior to the spike-slab models. Finally, a real data analysis demonstrates the effectiveness of variable selection of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信