1+1 卡洛吉罗-莫瑟-萨瑟兰场论与高阶三角兰道-利夫希茨模型的等价性

K. Atalikov, A. Zotov
{"title":"1+1 卡洛吉罗-莫瑟-萨瑟兰场论与高阶三角兰道-利夫希茨模型的等价性","authors":"K. Atalikov, A. Zotov","doi":"arxiv-2403.00428","DOIUrl":null,"url":null,"abstract":"We consider the classical integrable 1+1 trigonometric ${\\rm gl}_N$\nLandau-Lifshitz models constructed by means of quantum $R$-matrices satisfying\nalso the associative Yang-Baxter equation. It is shown that 1+1 field analogue\nof the trigonometric Calogero-Moser-Sutherland model is gauge equivalent to the\nLandau-Lifshitz model, which arises from the Antonov-Hasegawa-Zabrodin\ntrigonometric non-standard $R$-matrix. The latter generalizes the Cherednik's\n7-vertex $R$-matrix in ${\\rm GL}_2$ case to the case of ${\\rm GL}_N$. Explicit\nchange of variables between the 1+1 models is obtained.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"171 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauge equivalence of 1+1 Calogero-Moser-Sutherland field theory and higher rank trigonometric Landau-Lifshitz model\",\"authors\":\"K. Atalikov, A. Zotov\",\"doi\":\"arxiv-2403.00428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the classical integrable 1+1 trigonometric ${\\\\rm gl}_N$\\nLandau-Lifshitz models constructed by means of quantum $R$-matrices satisfying\\nalso the associative Yang-Baxter equation. It is shown that 1+1 field analogue\\nof the trigonometric Calogero-Moser-Sutherland model is gauge equivalent to the\\nLandau-Lifshitz model, which arises from the Antonov-Hasegawa-Zabrodin\\ntrigonometric non-standard $R$-matrix. The latter generalizes the Cherednik's\\n7-vertex $R$-matrix in ${\\\\rm GL}_2$ case to the case of ${\\\\rm GL}_N$. Explicit\\nchange of variables between the 1+1 models is obtained.\",\"PeriodicalId\":501592,\"journal\":{\"name\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Exactly Solvable and Integrable Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.00428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.00428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了经典可积分的 1+1 三角 ${rm gl}_N$Landau-Lifshitz 模型,这些模型是通过满足联立杨-巴克斯特方程的量子 $R$ 矩阵构造的。研究表明,三角卡洛吉罗-莫泽-萨瑟兰模型的 1+1 场类似物与兰道-利夫希茨模型是等价的,后者产生于安东诺夫-哈塞格瓦-扎布罗德三角非标准 R$ 矩阵。后者将${\rm GL}_2$情况下的切雷德尼克7顶点$R$矩阵推广到了${\rm GL}_N$情况。从而得到了 1+1 模型之间变量的明确变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge equivalence of 1+1 Calogero-Moser-Sutherland field theory and higher rank trigonometric Landau-Lifshitz model
We consider the classical integrable 1+1 trigonometric ${\rm gl}_N$ Landau-Lifshitz models constructed by means of quantum $R$-matrices satisfying also the associative Yang-Baxter equation. It is shown that 1+1 field analogue of the trigonometric Calogero-Moser-Sutherland model is gauge equivalent to the Landau-Lifshitz model, which arises from the Antonov-Hasegawa-Zabrodin trigonometric non-standard $R$-matrix. The latter generalizes the Cherednik's 7-vertex $R$-matrix in ${\rm GL}_2$ case to the case of ${\rm GL}_N$. Explicit change of variables between the 1+1 models is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信