{"title":"通过傅立叶变换估计制度切换扩散","authors":"Thomas Lux","doi":"10.1007/s11222-024-10397-6","DOIUrl":null,"url":null,"abstract":"<p>In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of regime-switching diffusions via Fourier transforms\",\"authors\":\"Thomas Lux\",\"doi\":\"10.1007/s11222-024-10397-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10397-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10397-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Estimation of regime-switching diffusions via Fourier transforms
In this article, an algorithm for maximum-likelihood estimation of regime-switching diffusions is proposed. The proposed approach uses a Fourier transform to numerically solve the system of Fokker–Planck or forward Kolmogorow equations for the temporal evolution of the state densities. Monte Carlo simulations confirm the theoretically expected consistency of this approach for moderate sample sizes and its practical feasibility for certain regime-switching diffusions used in economics and biology with moderate numbers of states and parameters. An application to animal movement data serves as an illustration of the proposed algorithm.
期刊介绍:
Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences.
In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification.
In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.