{"title":"基于 GRU 模型的低成本高性能异常轨迹检测与云计算中的深度时空序列分析","authors":"Guohao Tang, Huaying Zhao, Baohua Yu","doi":"10.1186/s13677-024-00611-1","DOIUrl":null,"url":null,"abstract":"Trajectory anomalies serve as early indicators of potential issues and frequently provide valuable insights into event occurrence. Existing methods for detecting abnormal trajectories primarily focus on comparing the spatial characteristics of the trajectories. However, they fail to capture the temporal dimension’s pattern and evolution within the trajectory data, thereby inadequately identifying the behavioral inertia of the target group. A few detection methods that incorporate spatiotemporal features have also failed to adequately analyze the spatiotemporal sequence evolution information; consequently, detection methods that ignore temporal and spatial correlations are too one-sided. Recurrent neural networks (RNNs), especially gate recurrent unit (GRU) that design reset and update gate control units, process nonlinear sequence processing capabilities, enabling effective extraction and analysis of both temporal and spatial characteristics. However, the basic GRU network model has limited expressive power and may not be able to adequately capture complex sequence patterns and semantic information. To address the above issues, an abnormal trajectory detection method based on the improved GRU model is proposed in cloud computing in this paper. To enhance the anomaly detection ability and training efficiency of relevant models, strictly control the input of irrelevant features and improve the model fitting effect, an improved model combining the random forest algorithm and fully connected layer network is designed. The method deconstructs spatiotemporal semantics through reset and update gated units, while effectively capturing feature evolution information and target behavioral inertia by leveraging the integration of features and nonlinear mapping capabilities of the fully connected layer network. The experimental results based on the GeoLife GPS trajectory dataset indicate that the proposed approach improves both generalization ability by 1% and reduces training cost by 31.68%. This success do provides a practical solution for the task of anomaly trajectory detection.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-cost and high-performance abnormal trajectory detection based on the GRU model with deep spatiotemporal sequence analysis in cloud computing\",\"authors\":\"Guohao Tang, Huaying Zhao, Baohua Yu\",\"doi\":\"10.1186/s13677-024-00611-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory anomalies serve as early indicators of potential issues and frequently provide valuable insights into event occurrence. Existing methods for detecting abnormal trajectories primarily focus on comparing the spatial characteristics of the trajectories. However, they fail to capture the temporal dimension’s pattern and evolution within the trajectory data, thereby inadequately identifying the behavioral inertia of the target group. A few detection methods that incorporate spatiotemporal features have also failed to adequately analyze the spatiotemporal sequence evolution information; consequently, detection methods that ignore temporal and spatial correlations are too one-sided. Recurrent neural networks (RNNs), especially gate recurrent unit (GRU) that design reset and update gate control units, process nonlinear sequence processing capabilities, enabling effective extraction and analysis of both temporal and spatial characteristics. However, the basic GRU network model has limited expressive power and may not be able to adequately capture complex sequence patterns and semantic information. To address the above issues, an abnormal trajectory detection method based on the improved GRU model is proposed in cloud computing in this paper. To enhance the anomaly detection ability and training efficiency of relevant models, strictly control the input of irrelevant features and improve the model fitting effect, an improved model combining the random forest algorithm and fully connected layer network is designed. The method deconstructs spatiotemporal semantics through reset and update gated units, while effectively capturing feature evolution information and target behavioral inertia by leveraging the integration of features and nonlinear mapping capabilities of the fully connected layer network. The experimental results based on the GeoLife GPS trajectory dataset indicate that the proposed approach improves both generalization ability by 1% and reduces training cost by 31.68%. This success do provides a practical solution for the task of anomaly trajectory detection.\",\"PeriodicalId\":501257,\"journal\":{\"name\":\"Journal of Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13677-024-00611-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00611-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-cost and high-performance abnormal trajectory detection based on the GRU model with deep spatiotemporal sequence analysis in cloud computing
Trajectory anomalies serve as early indicators of potential issues and frequently provide valuable insights into event occurrence. Existing methods for detecting abnormal trajectories primarily focus on comparing the spatial characteristics of the trajectories. However, they fail to capture the temporal dimension’s pattern and evolution within the trajectory data, thereby inadequately identifying the behavioral inertia of the target group. A few detection methods that incorporate spatiotemporal features have also failed to adequately analyze the spatiotemporal sequence evolution information; consequently, detection methods that ignore temporal and spatial correlations are too one-sided. Recurrent neural networks (RNNs), especially gate recurrent unit (GRU) that design reset and update gate control units, process nonlinear sequence processing capabilities, enabling effective extraction and analysis of both temporal and spatial characteristics. However, the basic GRU network model has limited expressive power and may not be able to adequately capture complex sequence patterns and semantic information. To address the above issues, an abnormal trajectory detection method based on the improved GRU model is proposed in cloud computing in this paper. To enhance the anomaly detection ability and training efficiency of relevant models, strictly control the input of irrelevant features and improve the model fitting effect, an improved model combining the random forest algorithm and fully connected layer network is designed. The method deconstructs spatiotemporal semantics through reset and update gated units, while effectively capturing feature evolution information and target behavioral inertia by leveraging the integration of features and nonlinear mapping capabilities of the fully connected layer network. The experimental results based on the GeoLife GPS trajectory dataset indicate that the proposed approach improves both generalization ability by 1% and reduces training cost by 31.68%. This success do provides a practical solution for the task of anomaly trajectory detection.