结环集、吸引子和不可压缩曲面

Héctor Barge, J. J. Sánchez-Gabites
{"title":"结环集、吸引子和不可压缩曲面","authors":"Héctor Barge, J. J. Sánchez-Gabites","doi":"10.1007/s00029-024-00922-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper we give a complete characterization of those knotted toroidal sets that can be realized as attractors for discrete or continuous dynamical systems globally defined in <span>\\({\\mathbb {R}}^3\\)</span>. We also see that the techniques used to solve this problem can be used to give sufficient conditions to ensure that a wide class of subcompacta of <span>\\({\\mathbb {R}}^3\\)</span> that are attractors for homeomorphisms must also be attractors for flows. In addition we study certain attractor-repeller decompositions of <span>\\({\\mathbb {S}}^3\\)</span> which arise naturally when considering toroidal sets.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knotted toroidal sets, attractors and incompressible surfaces\",\"authors\":\"Héctor Barge, J. J. Sánchez-Gabites\",\"doi\":\"10.1007/s00029-024-00922-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we give a complete characterization of those knotted toroidal sets that can be realized as attractors for discrete or continuous dynamical systems globally defined in <span>\\\\({\\\\mathbb {R}}^3\\\\)</span>. We also see that the techniques used to solve this problem can be used to give sufficient conditions to ensure that a wide class of subcompacta of <span>\\\\({\\\\mathbb {R}}^3\\\\)</span> that are attractors for homeomorphisms must also be attractors for flows. In addition we study certain attractor-repeller decompositions of <span>\\\\({\\\\mathbb {S}}^3\\\\)</span> which arise naturally when considering toroidal sets.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00922-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00922-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们给出了那些结环集的完整特征,这些结环集可以作为全局定义在 \({\mathbb {R}}^3\) 中的离散或连续动力系统的吸引子来实现。我们还看到,用于解决这个问题的技术可以用来给出充分条件,以确保作为同构吸引子的\({\mathbb {R}}^3\) 的一大类子紧凑集也一定是流的吸引子。此外,我们还研究了在({\mathbb {S}}^3\ )环状集合中自然出现的某些吸引子-排斥子分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Knotted toroidal sets, attractors and incompressible surfaces

Knotted toroidal sets, attractors and incompressible surfaces

In this paper we give a complete characterization of those knotted toroidal sets that can be realized as attractors for discrete or continuous dynamical systems globally defined in \({\mathbb {R}}^3\). We also see that the techniques used to solve this problem can be used to give sufficient conditions to ensure that a wide class of subcompacta of \({\mathbb {R}}^3\) that are attractors for homeomorphisms must also be attractors for flows. In addition we study certain attractor-repeller decompositions of \({\mathbb {S}}^3\) which arise naturally when considering toroidal sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信