{"title":"复平面对称映射的几何特征","authors":"","doi":"10.1007/s40840-024-01665-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we establish several characterizations of planar symmetric maps, such as preserving Euclidean circles, preserving <em>k</em>-Apollonius circles for some <span> <span>\\(k\\in (0,\\infty )\\)</span> </span>, and preserving geometric moduli of all pairs of disjoint continua in the extended complex plane. </p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Characterizations of Symmetric Maps in the Complex Plane\",\"authors\":\"\",\"doi\":\"10.1007/s40840-024-01665-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we establish several characterizations of planar symmetric maps, such as preserving Euclidean circles, preserving <em>k</em>-Apollonius circles for some <span> <span>\\\\(k\\\\in (0,\\\\infty )\\\\)</span> </span>, and preserving geometric moduli of all pairs of disjoint continua in the extended complex plane. </p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01665-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01665-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
Abstract In this paper, we establish several characterizations of planar symmetric maps, such as preserving Euclidean circles, preserving k-Apollonius circles for some \(k\in (0,\infty )\) , and preserving geometric moduli of all pairs disointed continu in the extended complex plane.的 k-Apollonius 圆,以及保留扩展复平面中所有不相交连续面对的几何模量。
Geometric Characterizations of Symmetric Maps in the Complex Plane
Abstract
In this paper, we establish several characterizations of planar symmetric maps, such as preserving Euclidean circles, preserving k-Apollonius circles for some \(k\in (0,\infty )\), and preserving geometric moduli of all pairs of disjoint continua in the extended complex plane.
期刊介绍:
This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.