{"title":"基于方差的全局敏感性分析的极端学习机","authors":"John Darges, Alen Alexanderian, Pierre Gremaud","doi":"10.1615/int.j.uncertaintyquantification.2024049519","DOIUrl":null,"url":null,"abstract":"Variance-based global sensitivity analysis (GSA) can provide a wealth of information when applied to complex models. A well-known Achilles’ heel of this approach is its computational cost which often renders it unfeasible in practice. An appealing alternative is to analyze instead the sensitivity of a surrogate model with the goal of lowering computational costs while maintaining sufficient accuracy. Should a surrogate be “simple\" enough to be amenable to the analytical calculations of its Sobol’ indices, the cost of GSA is essentially reduced to the construction of the surrogate. We propose a new class of sparse weight Extreme Learning Machines (SW-ELMs) which, when considered as surrogates in the context of GSA, admit analytical formulas for their Sobol’ indices and, unlike the standard ELMs, yield accurate approximations of these indices. The effectiveness of this approach is illustrated through both traditional benchmarks in the field and on a chemical reaction network.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"157 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXTREME LEARNING MACHINES FOR VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS\",\"authors\":\"John Darges, Alen Alexanderian, Pierre Gremaud\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024049519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variance-based global sensitivity analysis (GSA) can provide a wealth of information when applied to complex models. A well-known Achilles’ heel of this approach is its computational cost which often renders it unfeasible in practice. An appealing alternative is to analyze instead the sensitivity of a surrogate model with the goal of lowering computational costs while maintaining sufficient accuracy. Should a surrogate be “simple\\\" enough to be amenable to the analytical calculations of its Sobol’ indices, the cost of GSA is essentially reduced to the construction of the surrogate. We propose a new class of sparse weight Extreme Learning Machines (SW-ELMs) which, when considered as surrogates in the context of GSA, admit analytical formulas for their Sobol’ indices and, unlike the standard ELMs, yield accurate approximations of these indices. The effectiveness of this approach is illustrated through both traditional benchmarks in the field and on a chemical reaction network.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024049519\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024049519","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
EXTREME LEARNING MACHINES FOR VARIANCE-BASED GLOBAL SENSITIVITY ANALYSIS
Variance-based global sensitivity analysis (GSA) can provide a wealth of information when applied to complex models. A well-known Achilles’ heel of this approach is its computational cost which often renders it unfeasible in practice. An appealing alternative is to analyze instead the sensitivity of a surrogate model with the goal of lowering computational costs while maintaining sufficient accuracy. Should a surrogate be “simple" enough to be amenable to the analytical calculations of its Sobol’ indices, the cost of GSA is essentially reduced to the construction of the surrogate. We propose a new class of sparse weight Extreme Learning Machines (SW-ELMs) which, when considered as surrogates in the context of GSA, admit analytical formulas for their Sobol’ indices and, unlike the standard ELMs, yield accurate approximations of these indices. The effectiveness of this approach is illustrated through both traditional benchmarks in the field and on a chemical reaction network.
期刊介绍:
The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.