{"title":"通过具有总变异正则化的多向部分张量核规范实现张量补全","authors":"Rong Li, Bing Zheng","doi":"10.1007/s10092-024-00569-1","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the tensor completion problem, whose task is to estimate missing values with limited information. However, the crux of this problem is how to reasonably represent the low-rank structure embedded in the underlying data. In this work, we consider a new low-rank tensor completion model combined with the multi-directional partial tensor nuclear norm and the total variation (TV) regularization. Specifically, the partial sum of the tensor nuclear norm (PSTNN) is used to narrow the gap between the tensor tubal rank and its lower convex envelop [i.e. tensor nuclear norm (TNN)], and the TV regularization is adopted to maintain the smooth structure along the spatial dimension. In addition, the weighted sum of the tensor nuclear norm (WSTNN) is introduced to replace the traditional TNN to extend the PSTNN to the high-order tensor, which also can flexibly handle different correlations along different modes, resulting in an improved low <i>d</i>-tubal rank approximation. To tackle this new model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the proposed optimization problem. Theoretical analysis of the ADMM is conducted to prove the Karush–Kuhn–Tucker (KKT) conditions. Numerical examples demonstrate the proposed method outperforms some state-of-the-art methods in qualitative and quantitative aspects.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization\",\"authors\":\"Rong Li, Bing Zheng\",\"doi\":\"10.1007/s10092-024-00569-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper addresses the tensor completion problem, whose task is to estimate missing values with limited information. However, the crux of this problem is how to reasonably represent the low-rank structure embedded in the underlying data. In this work, we consider a new low-rank tensor completion model combined with the multi-directional partial tensor nuclear norm and the total variation (TV) regularization. Specifically, the partial sum of the tensor nuclear norm (PSTNN) is used to narrow the gap between the tensor tubal rank and its lower convex envelop [i.e. tensor nuclear norm (TNN)], and the TV regularization is adopted to maintain the smooth structure along the spatial dimension. In addition, the weighted sum of the tensor nuclear norm (WSTNN) is introduced to replace the traditional TNN to extend the PSTNN to the high-order tensor, which also can flexibly handle different correlations along different modes, resulting in an improved low <i>d</i>-tubal rank approximation. To tackle this new model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the proposed optimization problem. Theoretical analysis of the ADMM is conducted to prove the Karush–Kuhn–Tucker (KKT) conditions. Numerical examples demonstrate the proposed method outperforms some state-of-the-art methods in qualitative and quantitative aspects.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00569-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00569-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization
This paper addresses the tensor completion problem, whose task is to estimate missing values with limited information. However, the crux of this problem is how to reasonably represent the low-rank structure embedded in the underlying data. In this work, we consider a new low-rank tensor completion model combined with the multi-directional partial tensor nuclear norm and the total variation (TV) regularization. Specifically, the partial sum of the tensor nuclear norm (PSTNN) is used to narrow the gap between the tensor tubal rank and its lower convex envelop [i.e. tensor nuclear norm (TNN)], and the TV regularization is adopted to maintain the smooth structure along the spatial dimension. In addition, the weighted sum of the tensor nuclear norm (WSTNN) is introduced to replace the traditional TNN to extend the PSTNN to the high-order tensor, which also can flexibly handle different correlations along different modes, resulting in an improved low d-tubal rank approximation. To tackle this new model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the proposed optimization problem. Theoretical analysis of the ADMM is conducted to prove the Karush–Kuhn–Tucker (KKT) conditions. Numerical examples demonstrate the proposed method outperforms some state-of-the-art methods in qualitative and quantitative aspects.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.