动机谱的阿蒂亚对偶性

Toni Annala, Marc Hoyois, Ryomei Iwasa
{"title":"动机谱的阿蒂亚对偶性","authors":"Toni Annala, Marc Hoyois, Ryomei Iwasa","doi":"arxiv-2403.01561","DOIUrl":null,"url":null,"abstract":"We prove that Atiyah duality holds in the $\\infty$-category of non-$\\mathbb\nA^1$-invariant motivic spectra over arbitrary derived schemes: every smooth\nprojective scheme is dualizable with dual given by the Thom spectrum of its\nnegative tangent bundle. The Gysin maps recently constructed by L. Tang are a\nkey ingredient in the proof. We then present several applications. First, we\nstudy $\\mathbb A^1$-colocalization, which transforms any module over the\n$\\mathbb A^1$-invariant sphere into an $\\mathbb A^1$-invariant motivic spectrum\nwithout changing its values on smooth projective schemes. This can be applied\nto all known $p$-adic cohomology theories and gives a new elementary approach\nto \"logarithmic\" or \"tame\" cohomology theories; it recovers for instance the\nlogarithmic crystalline cohomology of strict normal crossings compactifications\nover perfect fields and shows that the latter is independent of the choice of\ncompactification. Second, we prove a motivic Landweber exact functor theorem,\nassociating a motivic spectrum to any graded formal group law classified by a\nflat map to the moduli stack of formal groups. Using this theorem, we compute\nthe ring of $\\mathbb P^1$-stable cohomology operations on the algebraic\nK-theory of qcqs derived schemes, and we prove that rational motivic cohomology\nis an idempotent motivic spectrum.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atiyah duality for motivic spectra\",\"authors\":\"Toni Annala, Marc Hoyois, Ryomei Iwasa\",\"doi\":\"arxiv-2403.01561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that Atiyah duality holds in the $\\\\infty$-category of non-$\\\\mathbb\\nA^1$-invariant motivic spectra over arbitrary derived schemes: every smooth\\nprojective scheme is dualizable with dual given by the Thom spectrum of its\\nnegative tangent bundle. The Gysin maps recently constructed by L. Tang are a\\nkey ingredient in the proof. We then present several applications. First, we\\nstudy $\\\\mathbb A^1$-colocalization, which transforms any module over the\\n$\\\\mathbb A^1$-invariant sphere into an $\\\\mathbb A^1$-invariant motivic spectrum\\nwithout changing its values on smooth projective schemes. This can be applied\\nto all known $p$-adic cohomology theories and gives a new elementary approach\\nto \\\"logarithmic\\\" or \\\"tame\\\" cohomology theories; it recovers for instance the\\nlogarithmic crystalline cohomology of strict normal crossings compactifications\\nover perfect fields and shows that the latter is independent of the choice of\\ncompactification. Second, we prove a motivic Landweber exact functor theorem,\\nassociating a motivic spectrum to any graded formal group law classified by a\\nflat map to the moduli stack of formal groups. Using this theorem, we compute\\nthe ring of $\\\\mathbb P^1$-stable cohomology operations on the algebraic\\nK-theory of qcqs derived schemes, and we prove that rational motivic cohomology\\nis an idempotent motivic spectrum.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.01561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.01561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了阿蒂亚对偶性在任意派生方案的非$\mathbbA^1$不变动机谱的$\infty$类别中成立:每个平滑投影方案都是可对偶的,其对偶由其负切线束的托姆谱给出。L. Tang 最近构建的 Gysin 映射是证明的关键要素。接着,我们介绍了几个应用。首先,我们研究了$\mathbb A^1$-colocalization,它将$\mathbb A^1$-不变球上的任何模块转化为$\mathbb A^1$-不变动机谱,而不改变其在光滑投影方案上的值。这可以应用于所有已知的 $p$-adic 同调理论,并为 "对数 "或 "驯服 "同调理论提供了一种新的基本方法;例如,它恢复了完美场上严格法向交叉紧凑的对数晶体同调,并证明后者与紧凑的选择无关。其次,我们证明了一个动机兰德韦伯精确函子定理,它将一个动机谱关联到由形式群模数堆的平映射分类的任何有级形式群法。利用这个定理,我们计算了在 qcqs 派生方案的代数 K 理论上 $\mathbb P^1$ 稳定同调运算的环,并证明了理性动机同调是一个幂等动机谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atiyah duality for motivic spectra
We prove that Atiyah duality holds in the $\infty$-category of non-$\mathbb A^1$-invariant motivic spectra over arbitrary derived schemes: every smooth projective scheme is dualizable with dual given by the Thom spectrum of its negative tangent bundle. The Gysin maps recently constructed by L. Tang are a key ingredient in the proof. We then present several applications. First, we study $\mathbb A^1$-colocalization, which transforms any module over the $\mathbb A^1$-invariant sphere into an $\mathbb A^1$-invariant motivic spectrum without changing its values on smooth projective schemes. This can be applied to all known $p$-adic cohomology theories and gives a new elementary approach to "logarithmic" or "tame" cohomology theories; it recovers for instance the logarithmic crystalline cohomology of strict normal crossings compactifications over perfect fields and shows that the latter is independent of the choice of compactification. Second, we prove a motivic Landweber exact functor theorem, associating a motivic spectrum to any graded formal group law classified by a flat map to the moduli stack of formal groups. Using this theorem, we compute the ring of $\mathbb P^1$-stable cohomology operations on the algebraic K-theory of qcqs derived schemes, and we prove that rational motivic cohomology is an idempotent motivic spectrum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信