{"title":"基于 Power Data Access Viewer 的尼罗河流域气象干旱分析和降雨量变异性","authors":"Birara Gebeyhu","doi":"10.1155/2024/9985773","DOIUrl":null,"url":null,"abstract":"Meteorological drought poses a frequent challenge in the Nile River basin, yet its comprehensive evaluation across the basin has been hindered by insufficient recorded rainfall data. Common indices like the standard precipitation index, coefficients of variation, and precipitation concentration index serve as pivotal tools in gauging drought severity. This research aimed to assess the meteorological drought status in the Nile River basin by using the Power Data Access Viewer product rainfall data. Bias correction procedures were implemented to refine the monthly rainfall data for Bahirdar, Markos, Nekemt, and Muger stations, resulting in notable improvements in the coefficient of determination (<span><svg height=\"11.7978pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 13.2276 11.7978\" width=\"13.2276pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\"></path></g></svg>)</span> that were increased from 0.74 to 0.93, 0.72 to 0.89, 0.71 to 0.96, and 0.69 to 0.84, respectively. The average spatial distribution of drought in the Nile basin was classified as extremely wet (3.81%), severely wet (9.01%), moderately wet (7.36%), near normal (9.97%), moderately drought (21.20%), severely drought (17.11%), and extremely drought (31.54%). Approximately 10.33% of the Nile River basin was situated in regions characterized by high rainfall variability, while around 21.17% was located in areas with a notably irregular precipitation concentration index. Overall, this study sheds light on the prevailing meteorological drought patterns in the Nile River basin, emphasizing the significance of understanding and managing these phenomena for the sustainable development of the region.","PeriodicalId":7353,"journal":{"name":"Advances in Meteorology","volume":"32 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Data Access Viewer-Based Meteorological Drought Analysis and Rainfall Variability in the Nile River Basin\",\"authors\":\"Birara Gebeyhu\",\"doi\":\"10.1155/2024/9985773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meteorological drought poses a frequent challenge in the Nile River basin, yet its comprehensive evaluation across the basin has been hindered by insufficient recorded rainfall data. Common indices like the standard precipitation index, coefficients of variation, and precipitation concentration index serve as pivotal tools in gauging drought severity. This research aimed to assess the meteorological drought status in the Nile River basin by using the Power Data Access Viewer product rainfall data. Bias correction procedures were implemented to refine the monthly rainfall data for Bahirdar, Markos, Nekemt, and Muger stations, resulting in notable improvements in the coefficient of determination (<span><svg height=\\\"11.7978pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 13.2276 11.7978\\\" width=\\\"13.2276pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.151,-5.741)\\\"></path></g></svg>)</span> that were increased from 0.74 to 0.93, 0.72 to 0.89, 0.71 to 0.96, and 0.69 to 0.84, respectively. The average spatial distribution of drought in the Nile basin was classified as extremely wet (3.81%), severely wet (9.01%), moderately wet (7.36%), near normal (9.97%), moderately drought (21.20%), severely drought (17.11%), and extremely drought (31.54%). Approximately 10.33% of the Nile River basin was situated in regions characterized by high rainfall variability, while around 21.17% was located in areas with a notably irregular precipitation concentration index. Overall, this study sheds light on the prevailing meteorological drought patterns in the Nile River basin, emphasizing the significance of understanding and managing these phenomena for the sustainable development of the region.\",\"PeriodicalId\":7353,\"journal\":{\"name\":\"Advances in Meteorology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Meteorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9985773\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2024/9985773","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Power Data Access Viewer-Based Meteorological Drought Analysis and Rainfall Variability in the Nile River Basin
Meteorological drought poses a frequent challenge in the Nile River basin, yet its comprehensive evaluation across the basin has been hindered by insufficient recorded rainfall data. Common indices like the standard precipitation index, coefficients of variation, and precipitation concentration index serve as pivotal tools in gauging drought severity. This research aimed to assess the meteorological drought status in the Nile River basin by using the Power Data Access Viewer product rainfall data. Bias correction procedures were implemented to refine the monthly rainfall data for Bahirdar, Markos, Nekemt, and Muger stations, resulting in notable improvements in the coefficient of determination () that were increased from 0.74 to 0.93, 0.72 to 0.89, 0.71 to 0.96, and 0.69 to 0.84, respectively. The average spatial distribution of drought in the Nile basin was classified as extremely wet (3.81%), severely wet (9.01%), moderately wet (7.36%), near normal (9.97%), moderately drought (21.20%), severely drought (17.11%), and extremely drought (31.54%). Approximately 10.33% of the Nile River basin was situated in regions characterized by high rainfall variability, while around 21.17% was located in areas with a notably irregular precipitation concentration index. Overall, this study sheds light on the prevailing meteorological drought patterns in the Nile River basin, emphasizing the significance of understanding and managing these phenomena for the sustainable development of the region.
期刊介绍:
Advances in Meteorology is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles in all areas of meteorology and climatology. Topics covered include, but are not limited to, forecasting techniques and applications, meteorological modeling, data analysis, atmospheric chemistry and physics, climate change, satellite meteorology, marine meteorology, and forest meteorology.