保角 CR 子拉普拉斯障碍问题的优化控制

Pak Tung Ho, Cheikh Birahim Ndiaye
{"title":"保角 CR 子拉普拉斯障碍问题的优化控制","authors":"Pak Tung Ho, Cheikh Birahim Ndiaye","doi":"10.1007/s00030-024-00923-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study an optimal control problem associated to the conformal CR sub-Laplacian obstacle problem on a compact pseudohermitian manifold. When the CR Yamabe constant is positive, we show that the optimal controls are equal to their associated optimal states and show the existence of a smooth optimal control which induces a conformal contact form with constant Webster scalar curvature.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control for the conformal CR sub-Laplacian obstacle problem\",\"authors\":\"Pak Tung Ho, Cheikh Birahim Ndiaye\",\"doi\":\"10.1007/s00030-024-00923-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study an optimal control problem associated to the conformal CR sub-Laplacian obstacle problem on a compact pseudohermitian manifold. When the CR Yamabe constant is positive, we show that the optimal controls are equal to their associated optimal states and show the existence of a smooth optimal control which induces a conformal contact form with constant Webster scalar curvature.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00923-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00923-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了紧凑伪全息流形上与共形CR子拉普拉奇障碍问题相关的最优控制问题。当 CR Yamabe 常数为正数时,我们证明了最优控制等于其相关的最优状态,并证明了一个平滑最优控制的存在,它诱导了一个具有恒定韦伯斯特标量曲率的共形接触形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control for the conformal CR sub-Laplacian obstacle problem

In this paper, we study an optimal control problem associated to the conformal CR sub-Laplacian obstacle problem on a compact pseudohermitian manifold. When the CR Yamabe constant is positive, we show that the optimal controls are equal to their associated optimal states and show the existence of a smooth optimal control which induces a conformal contact form with constant Webster scalar curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信