论格罗斯-皮塔耶夫斯基特征值问题索波列夫梯度流的收敛性

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Ziang Chen, Jianfeng Lu, Yulong Lu, Xiangxiong Zhang
{"title":"论格罗斯-皮塔耶夫斯基特征值问题索波列夫梯度流的收敛性","authors":"Ziang Chen, Jianfeng Lu, Yulong Lu, Xiangxiong Zhang","doi":"10.1137/23m1552553","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 667-691, April 2024. <br/> Abstract. We study the convergences of three projected Sobolev gradient flows to the ground state of the Gross–Pitaevskii eigenvalue problem. They are constructed as the gradient flows of the Gross–Pitaevskii energy functional with respect to the [math]-metric and two other equivalent metrics on [math], including the iterate-independent [math]-metric and the iterate-dependent [math]-metric. We first prove the energy dissipation property and the global convergence to a critical point of the Gross–Pitaevskii energy for the discrete-time [math] and [math]-gradient flow. We also prove local exponential convergence of all three schemes to the ground state.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"265 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Convergence of Sobolev Gradient Flow for the Gross–Pitaevskii Eigenvalue Problem\",\"authors\":\"Ziang Chen, Jianfeng Lu, Yulong Lu, Xiangxiong Zhang\",\"doi\":\"10.1137/23m1552553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 667-691, April 2024. <br/> Abstract. We study the convergences of three projected Sobolev gradient flows to the ground state of the Gross–Pitaevskii eigenvalue problem. They are constructed as the gradient flows of the Gross–Pitaevskii energy functional with respect to the [math]-metric and two other equivalent metrics on [math], including the iterate-independent [math]-metric and the iterate-dependent [math]-metric. We first prove the energy dissipation property and the global convergence to a critical point of the Gross–Pitaevskii energy for the discrete-time [math] and [math]-gradient flow. We also prove local exponential convergence of all three schemes to the ground state.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"265 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1552553\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552553","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 2 期第 667-691 页,2024 年 4 月。 摘要。我们研究了三个投影索波列梯度流对格罗斯-皮塔耶夫斯基特征值问题基态的收敛性。它们被构造为格罗斯-皮塔耶夫斯基能量函数相对于[math]度量和[math]上另外两个等效度量(包括迭代无关的[math]度量和迭代无关的[math]度量)的梯度流。我们首先证明了离散时间[math]和[math]梯度流的能量耗散特性和对格罗斯-皮塔耶夫斯基能量临界点的全局收敛性。我们还证明了所有三种方案对基态的局部指数收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Convergence of Sobolev Gradient Flow for the Gross–Pitaevskii Eigenvalue Problem
SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 667-691, April 2024.
Abstract. We study the convergences of three projected Sobolev gradient flows to the ground state of the Gross–Pitaevskii eigenvalue problem. They are constructed as the gradient flows of the Gross–Pitaevskii energy functional with respect to the [math]-metric and two other equivalent metrics on [math], including the iterate-independent [math]-metric and the iterate-dependent [math]-metric. We first prove the energy dissipation property and the global convergence to a critical point of the Gross–Pitaevskii energy for the discrete-time [math] and [math]-gradient flow. We also prove local exponential convergence of all three schemes to the ground state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信