{"title":"结构化种群中的行为选择。","authors":"Matthias Borgstede","doi":"10.1007/s12064-024-00413-8","DOIUrl":null,"url":null,"abstract":"<p><p>The multilevel model of behavioral selection (MLBS) by Borgstede and Eggert (Behav Process 186:104370. 10.1016/j.beproc.2021.104370 , 2021) provides a formal framework that integrates reinforcement learning with natural selection using an extended Price equation. However, the MLBS is so far only formulated for homogeneous populations, thereby excluding all sources of variation between individuals. This limitation is of primary theoretical concern because any application of the MLBS to real data requires to account for variation between individuals. In this paper, I extend the MLBS to account for inter-individual variation by dividing the population into homogeneous sub-populations and including class-specific reproductive values as weighting factors for an individual's evolutionary fitness. The resulting formalism closes the gap between the theoretical underpinnings of behavioral selection and the application of the theory to empirical data, which naturally includes inter-individual variation. Furthermore, the extended MLBS is used to establish an explicit connection between the dynamics of learning and the maximization of individual fitness. These results expand the scope of the MLBS as a general theoretical framework for the quantitative analysis of learning and evolution.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":" ","pages":"97-105"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Behavioral selection in structured populations.\",\"authors\":\"Matthias Borgstede\",\"doi\":\"10.1007/s12064-024-00413-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The multilevel model of behavioral selection (MLBS) by Borgstede and Eggert (Behav Process 186:104370. 10.1016/j.beproc.2021.104370 , 2021) provides a formal framework that integrates reinforcement learning with natural selection using an extended Price equation. However, the MLBS is so far only formulated for homogeneous populations, thereby excluding all sources of variation between individuals. This limitation is of primary theoretical concern because any application of the MLBS to real data requires to account for variation between individuals. In this paper, I extend the MLBS to account for inter-individual variation by dividing the population into homogeneous sub-populations and including class-specific reproductive values as weighting factors for an individual's evolutionary fitness. The resulting formalism closes the gap between the theoretical underpinnings of behavioral selection and the application of the theory to empirical data, which naturally includes inter-individual variation. Furthermore, the extended MLBS is used to establish an explicit connection between the dynamics of learning and the maximization of individual fitness. These results expand the scope of the MLBS as a general theoretical framework for the quantitative analysis of learning and evolution.</p>\",\"PeriodicalId\":54428,\"journal\":{\"name\":\"Theory in Biosciences\",\"volume\":\" \",\"pages\":\"97-105\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11127832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory in Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12064-024-00413-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-024-00413-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
The multilevel model of behavioral selection (MLBS) by Borgstede and Eggert (Behav Process 186:104370. 10.1016/j.beproc.2021.104370 , 2021) provides a formal framework that integrates reinforcement learning with natural selection using an extended Price equation. However, the MLBS is so far only formulated for homogeneous populations, thereby excluding all sources of variation between individuals. This limitation is of primary theoretical concern because any application of the MLBS to real data requires to account for variation between individuals. In this paper, I extend the MLBS to account for inter-individual variation by dividing the population into homogeneous sub-populations and including class-specific reproductive values as weighting factors for an individual's evolutionary fitness. The resulting formalism closes the gap between the theoretical underpinnings of behavioral selection and the application of the theory to empirical data, which naturally includes inter-individual variation. Furthermore, the extended MLBS is used to establish an explicit connection between the dynamics of learning and the maximization of individual fitness. These results expand the scope of the MLBS as a general theoretical framework for the quantitative analysis of learning and evolution.
期刊介绍:
Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are:
Artificial Life;
Bioinformatics with a focus on novel methods, phenomena, and interpretations;
Bioinspired Modeling;
Complexity, Robustness, and Resilience;
Embodied Cognition;
Evolutionary Biology;
Evo-Devo;
Game Theoretic Modeling;
Genetics;
History of Biology;
Language Evolution;
Mathematical Biology;
Origin of Life;
Philosophy of Biology;
Population Biology;
Systems Biology;
Theoretical Ecology;
Theoretical Molecular Biology;
Theoretical Neuroscience & Cognition.