Marshall F Wilkinson, Jennyfer P Galdino Chaves, Miguel Vega Arroyo, Mohammed Zarrabian
{"title":"用运动诱发电位(MEP)而非肌电图(EMG)检测到反复的 L5 神经根损伤:病例报告。","authors":"Marshall F Wilkinson, Jennyfer P Galdino Chaves, Miguel Vega Arroyo, Mohammed Zarrabian","doi":"10.1080/21646821.2024.2312098","DOIUrl":null,"url":null,"abstract":"<p><p>We report a case where neuromonitoring, using motor evoked potentials (MEP), detected an intraoperative L5 nerve root deficit during a lumbosacral decompression and instrumented fusion procedure. Critically, the MEP changes were not preceded nor accompanied by any significant spontaneous electromyography (sEMG) activity. Presumptive L5 innervated muscles, including tibialis anterior (TA), extensor hallucis longus (EHL) and gluteus maximus, were targets for nerve root surveillance using combined MEP and sEMG techniques. During a high-grade spondylolisthesis correction procedure, attempts to align a left-sided rod resulted in repeated loss and recovery cycles of MEP from the TA and EHL. No accompanying EMG alerts were associated with any of the MEP changes nor were MEP variations seen from muscles innervated above and below L5. After several attempts, the rod alignment was achieved, but significant MEP signal decrement (72% decrease) remained from the EHL. Postoperatively, the patient experienced significant foot drop on the left side that recovered over a period of 3 months. This case contributes to a growing body of evidence that exclusive reliance on sEMG for spinal nerve root scrutiny can be unreliable and MEP may provide more dependable data on nerve root patency.</p>","PeriodicalId":22816,"journal":{"name":"The Neurodiagnostic Journal","volume":" ","pages":"24-32"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Repeated L5 Nerve Root Compromise Detected with Motor Evoked Potentials (MEP), but Not Electromyography (EMG): A Case Report.\",\"authors\":\"Marshall F Wilkinson, Jennyfer P Galdino Chaves, Miguel Vega Arroyo, Mohammed Zarrabian\",\"doi\":\"10.1080/21646821.2024.2312098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We report a case where neuromonitoring, using motor evoked potentials (MEP), detected an intraoperative L5 nerve root deficit during a lumbosacral decompression and instrumented fusion procedure. Critically, the MEP changes were not preceded nor accompanied by any significant spontaneous electromyography (sEMG) activity. Presumptive L5 innervated muscles, including tibialis anterior (TA), extensor hallucis longus (EHL) and gluteus maximus, were targets for nerve root surveillance using combined MEP and sEMG techniques. During a high-grade spondylolisthesis correction procedure, attempts to align a left-sided rod resulted in repeated loss and recovery cycles of MEP from the TA and EHL. No accompanying EMG alerts were associated with any of the MEP changes nor were MEP variations seen from muscles innervated above and below L5. After several attempts, the rod alignment was achieved, but significant MEP signal decrement (72% decrease) remained from the EHL. Postoperatively, the patient experienced significant foot drop on the left side that recovered over a period of 3 months. This case contributes to a growing body of evidence that exclusive reliance on sEMG for spinal nerve root scrutiny can be unreliable and MEP may provide more dependable data on nerve root patency.</p>\",\"PeriodicalId\":22816,\"journal\":{\"name\":\"The Neurodiagnostic Journal\",\"volume\":\" \",\"pages\":\"24-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Neurodiagnostic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21646821.2024.2312098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Neurodiagnostic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21646821.2024.2312098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Health Professions","Score":null,"Total":0}
Repeated L5 Nerve Root Compromise Detected with Motor Evoked Potentials (MEP), but Not Electromyography (EMG): A Case Report.
We report a case where neuromonitoring, using motor evoked potentials (MEP), detected an intraoperative L5 nerve root deficit during a lumbosacral decompression and instrumented fusion procedure. Critically, the MEP changes were not preceded nor accompanied by any significant spontaneous electromyography (sEMG) activity. Presumptive L5 innervated muscles, including tibialis anterior (TA), extensor hallucis longus (EHL) and gluteus maximus, were targets for nerve root surveillance using combined MEP and sEMG techniques. During a high-grade spondylolisthesis correction procedure, attempts to align a left-sided rod resulted in repeated loss and recovery cycles of MEP from the TA and EHL. No accompanying EMG alerts were associated with any of the MEP changes nor were MEP variations seen from muscles innervated above and below L5. After several attempts, the rod alignment was achieved, but significant MEP signal decrement (72% decrease) remained from the EHL. Postoperatively, the patient experienced significant foot drop on the left side that recovered over a period of 3 months. This case contributes to a growing body of evidence that exclusive reliance on sEMG for spinal nerve root scrutiny can be unreliable and MEP may provide more dependable data on nerve root patency.
期刊介绍:
The Neurodiagnostic Journal is the official journal of ASET - The Neurodiagnostic Society. It serves as an educational resource for Neurodiagnostic professionals, a vehicle for introducing new techniques and innovative technologies in the field, patient safety and advocacy, and an avenue for sharing best practices within the Neurodiagnostic Technology profession. The journal features original articles about electroencephalography (EEG), evoked potentials (EP), intraoperative neuromonitoring (IONM), nerve conduction (NC), polysomnography (PSG), autonomic testing, and long-term monitoring (LTM) in the intensive care (ICU) and epilepsy monitoring units (EMU). Subject matter also includes education, training, lab management, legislative and licensure needs, guidelines for standards of care, and the impact of our profession in healthcare and society. The journal seeks to foster ideas, commentary, and news from technologists, physicians, clinicians, managers/leaders, and professional organizations, and to introduce trends and the latest developments in the field of neurodiagnostics. Media reviews, case studies, ASET Annual Conference proceedings, review articles, and quizzes for ASET-CEUs are also published in The Neurodiagnostic Journal.