Bo Zhang, Pengtao Liu, Huakang Sheng, Yongzhi Han, Qipeng Yuan
{"title":"通过激活 AMPK-Sirt 1 通路,长期摄入 sulforaphene 可减轻 D-半乳糖诱导的皮肤衰老。","authors":"Bo Zhang, Pengtao Liu, Huakang Sheng, Yongzhi Han, Qipeng Yuan","doi":"10.1007/s11010-024-04965-7","DOIUrl":null,"url":null,"abstract":"<p><p>D-Galactose (D-gal) accumulation triggers the generation of oxygen free radicals, resulting in skin aging. Sulforaphene (SFE), an isothiocyanate compound derived from radish seeds, possesses diverse biological activities, including protective effects against inflammation and oxidative damage. This investigation delves into the antioxidant impact of SFE on age-related skin injury. In vivo experiments demonstrate that SFE treatment significantly improves the macro- and micro-morphology of dorsal skin. It effectively diminishes the elevation of oxidative stress biomarkers in mice skin tissue treated with D-gal, concurrently enhancing the activity of antioxidant enzymes. Additionally, SFE mitigates collagen mRNA degradation, lowers pro-inflammatory cytokine levels, and downregulates MAPK-related protein expression in the skin. Moreover, SFE supplementation reduces lipid metabolite levels and elevates amino acid metabolites, such as L-cysteine and L-histidine. These findings suggest that SFE holds promise as a natural remedy to mitigate aging induced by oxidative stress.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"295-307"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term intake of sulforaphene alleviates D-galactose-induced skin senescence by activating AMPK-Sirt 1 pathway.\",\"authors\":\"Bo Zhang, Pengtao Liu, Huakang Sheng, Yongzhi Han, Qipeng Yuan\",\"doi\":\"10.1007/s11010-024-04965-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>D-Galactose (D-gal) accumulation triggers the generation of oxygen free radicals, resulting in skin aging. Sulforaphene (SFE), an isothiocyanate compound derived from radish seeds, possesses diverse biological activities, including protective effects against inflammation and oxidative damage. This investigation delves into the antioxidant impact of SFE on age-related skin injury. In vivo experiments demonstrate that SFE treatment significantly improves the macro- and micro-morphology of dorsal skin. It effectively diminishes the elevation of oxidative stress biomarkers in mice skin tissue treated with D-gal, concurrently enhancing the activity of antioxidant enzymes. Additionally, SFE mitigates collagen mRNA degradation, lowers pro-inflammatory cytokine levels, and downregulates MAPK-related protein expression in the skin. Moreover, SFE supplementation reduces lipid metabolite levels and elevates amino acid metabolites, such as L-cysteine and L-histidine. These findings suggest that SFE holds promise as a natural remedy to mitigate aging induced by oxidative stress.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"295-307\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-04965-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-04965-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Long-term intake of sulforaphene alleviates D-galactose-induced skin senescence by activating AMPK-Sirt 1 pathway.
D-Galactose (D-gal) accumulation triggers the generation of oxygen free radicals, resulting in skin aging. Sulforaphene (SFE), an isothiocyanate compound derived from radish seeds, possesses diverse biological activities, including protective effects against inflammation and oxidative damage. This investigation delves into the antioxidant impact of SFE on age-related skin injury. In vivo experiments demonstrate that SFE treatment significantly improves the macro- and micro-morphology of dorsal skin. It effectively diminishes the elevation of oxidative stress biomarkers in mice skin tissue treated with D-gal, concurrently enhancing the activity of antioxidant enzymes. Additionally, SFE mitigates collagen mRNA degradation, lowers pro-inflammatory cytokine levels, and downregulates MAPK-related protein expression in the skin. Moreover, SFE supplementation reduces lipid metabolite levels and elevates amino acid metabolites, such as L-cysteine and L-histidine. These findings suggest that SFE holds promise as a natural remedy to mitigate aging induced by oxidative stress.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.