Gamzepelin Aksoy, Grégoire Cattan, Subrata Chakraborty, Murat Karabatak
{"title":"基于量子机的决策支持系统,用于从脑电图记录中检测精神分裂症。","authors":"Gamzepelin Aksoy, Grégoire Cattan, Subrata Chakraborty, Murat Karabatak","doi":"10.1007/s10916-024-02048-0","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a serious chronic mental disorder that significantly affects daily life. Electroencephalography (EEG), a method used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with specific treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using different qubit numbers and different circuits in addition to classical machine learning algorithms. All analyses were conducted in the simulator environment of the IBM Quantum Platform. In the classification of this EEG dataset, it is evident that the QSVM algorithm demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as proof that quantum machine learning algorithms can be effectively utilized in the field of healthcare.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"29"},"PeriodicalIF":3.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914922/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum Machine-Based Decision Support System for the Detection of Schizophrenia from EEG Records.\",\"authors\":\"Gamzepelin Aksoy, Grégoire Cattan, Subrata Chakraborty, Murat Karabatak\",\"doi\":\"10.1007/s10916-024-02048-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia is a serious chronic mental disorder that significantly affects daily life. Electroencephalography (EEG), a method used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with specific treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using different qubit numbers and different circuits in addition to classical machine learning algorithms. All analyses were conducted in the simulator environment of the IBM Quantum Platform. In the classification of this EEG dataset, it is evident that the QSVM algorithm demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as proof that quantum machine learning algorithms can be effectively utilized in the field of healthcare.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"48 1\",\"pages\":\"29\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-024-02048-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02048-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
摘要
精神分裂症是一种严重影响日常生活的慢性精神障碍。脑电图(EEG)是一种用于测量大脑精神活动的方法,也是诊断精神分裂症的技术之一。精神分裂症的症状通常始于儿童时期,随着年龄的增长症状会越来越明显。不过,这种疾病可以通过特定的治疗方法得到控制。计算机辅助方法可用于实现对这种疾病的早期诊断。本研究利用各种机器学习算法和新兴的量子机器学习算法技术,通过脑电信号检测精神分裂症。主成分分析(PCA)方法被用于处理量子系统中获得的数据。利用各种特征图将降维后的数据转换为量子比特形式,并将其作为量子支持向量机(QSVM)算法的输入。因此,除了经典的机器学习算法外,QSVM 算法还使用了不同的量子比特数和不同的电路。所有分析都是在 IBM 量子平台的模拟环境中进行的。在该脑电图数据集的分类中,QSVM 算法在使用保利 X 和保利 Z 特征图时表现出了卓越的性能,成功率高达 100%。这项研究证明,量子机器学习算法可以有效地应用于医疗保健领域。
Quantum Machine-Based Decision Support System for the Detection of Schizophrenia from EEG Records.
Schizophrenia is a serious chronic mental disorder that significantly affects daily life. Electroencephalography (EEG), a method used to measure mental activities in the brain, is among the techniques employed in the diagnosis of schizophrenia. The symptoms of the disease typically begin in childhood and become more pronounced as one grows older. However, it can be managed with specific treatments. Computer-aided methods can be used to achieve an early diagnosis of this illness. In this study, various machine learning algorithms and the emerging technology of quantum-based machine learning algorithm were used to detect schizophrenia using EEG signals. The principal component analysis (PCA) method was applied to process the obtained data in quantum systems. The data, which were reduced in dimensionality, were transformed into qubit form using various feature maps and provided as input to the Quantum Support Vector Machine (QSVM) algorithm. Thus, the QSVM algorithm was applied using different qubit numbers and different circuits in addition to classical machine learning algorithms. All analyses were conducted in the simulator environment of the IBM Quantum Platform. In the classification of this EEG dataset, it is evident that the QSVM algorithm demonstrated superior performance with a 100% success rate when using Pauli X and Pauli Z feature maps. This study serves as proof that quantum machine learning algorithms can be effectively utilized in the field of healthcare.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.