矩阵因式分解和五边形映射

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Pavlos Kassotakis
{"title":"矩阵因式分解和五边形映射","authors":"Pavlos Kassotakis","doi":"10.1098/rspa.2023.0276","DOIUrl":null,"url":null,"abstract":"We propose a specific class of matrices that participate in factorization problems that turn out to be equivalent to constant and entwining (non-constant) pentagon, reverse-pentagon or Yang–Baxter maps, expressed in non-commutative variables. In detail, we show that factorizations of order <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:math> </jats:inline-formula> matrices of this specific class are equivalent to the <jats:italic>homogeneous normalization map</jats:italic> . From order <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:math> </jats:inline-formula> matrices, we obtain an extension of the homogeneous normalization map, as well as novel entwining pentagon, reverse-pentagon and Yang–Baxter maps.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"221 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix factorizations and pentagon maps\",\"authors\":\"Pavlos Kassotakis\",\"doi\":\"10.1098/rspa.2023.0276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a specific class of matrices that participate in factorization problems that turn out to be equivalent to constant and entwining (non-constant) pentagon, reverse-pentagon or Yang–Baxter maps, expressed in non-commutative variables. In detail, we show that factorizations of order <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:math> </jats:inline-formula> matrices of this specific class are equivalent to the <jats:italic>homogeneous normalization map</jats:italic> . From order <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>N</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:math> </jats:inline-formula> matrices, we obtain an extension of the homogeneous normalization map, as well as novel entwining pentagon, reverse-pentagon and Yang–Baxter maps.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"221 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0276\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0276","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类特殊的矩阵,它们参与的因式分解问题等价于恒定和缠绕(非恒定)五边形、反五边形或杨-巴克斯特映射,用非交换变量表示。具体而言,我们证明了这一特定类别的 N = 2 阶矩阵的因式分解等价于同质归一化映射。从 N = 3 阶矩阵中,我们得到了同质归一化映射的扩展,以及新颖的缠绕五边形、反五边形和杨-巴克斯特映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix factorizations and pentagon maps
We propose a specific class of matrices that participate in factorization problems that turn out to be equivalent to constant and entwining (non-constant) pentagon, reverse-pentagon or Yang–Baxter maps, expressed in non-commutative variables. In detail, we show that factorizations of order N = 2 matrices of this specific class are equivalent to the homogeneous normalization map . From order N = 3 matrices, we obtain an extension of the homogeneous normalization map, as well as novel entwining pentagon, reverse-pentagon and Yang–Baxter maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信