不完全市场中衍生证券的最佳定位

Tim Leung, Matthew Lorig, Yoshihiro Shirai
{"title":"不完全市场中衍生证券的最佳定位","authors":"Tim Leung, Matthew Lorig, Yoshihiro Shirai","doi":"arxiv-2403.00139","DOIUrl":null,"url":null,"abstract":"This paper analyzes a problem of optimal static hedging using derivatives in\nincomplete markets. The investor is assumed to have a risk exposure to two\nunderlying assets. The hedging instruments are vanilla options written on a\nsingle underlying asset. The hedging problem is formulated as a utility\nmaximization problem whereby the form of the optimal static hedge is\ndetermined. Among our results, a semi-analytical solution for the optimizer is\nfound through variational methods for exponential, power/logarithmic, and\nquadratic utility. When vanilla options are available for each underlying\nasset, the optimal solution is related to the fixed points of a Lipschitz map.\nIn the case of exponential utility, there is only one such fixed point, and\nsubsequent iterations of the map converge to it.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal positioning in derivative securities in incomplete markets\",\"authors\":\"Tim Leung, Matthew Lorig, Yoshihiro Shirai\",\"doi\":\"arxiv-2403.00139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes a problem of optimal static hedging using derivatives in\\nincomplete markets. The investor is assumed to have a risk exposure to two\\nunderlying assets. The hedging instruments are vanilla options written on a\\nsingle underlying asset. The hedging problem is formulated as a utility\\nmaximization problem whereby the form of the optimal static hedge is\\ndetermined. Among our results, a semi-analytical solution for the optimizer is\\nfound through variational methods for exponential, power/logarithmic, and\\nquadratic utility. When vanilla options are available for each underlying\\nasset, the optimal solution is related to the fixed points of a Lipschitz map.\\nIn the case of exponential utility, there is only one such fixed point, and\\nsubsequent iterations of the map converge to it.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.00139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.00139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了在不完全市场中利用衍生工具进行最优静态对冲的问题。假定投资者面临两种标的资产的风险。对冲工具是以单一标的资产为标的的虚值期权。对冲问题被表述为一个效用最大化问题,最优静态对冲的形式由此确定。在我们的研究结果中,通过指数、幂/对数和二次效用的变分法,发现了优化器的半解析解。当每种标的资产都有虚值期权时,最优解与一个 Lipschitz 地图的固定点有关。在指数效用的情况下,只有一个这样的固定点,地图的后续迭代会向它收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal positioning in derivative securities in incomplete markets
This paper analyzes a problem of optimal static hedging using derivatives in incomplete markets. The investor is assumed to have a risk exposure to two underlying assets. The hedging instruments are vanilla options written on a single underlying asset. The hedging problem is formulated as a utility maximization problem whereby the form of the optimal static hedge is determined. Among our results, a semi-analytical solution for the optimizer is found through variational methods for exponential, power/logarithmic, and quadratic utility. When vanilla options are available for each underlying asset, the optimal solution is related to the fixed points of a Lipschitz map. In the case of exponential utility, there is only one such fixed point, and subsequent iterations of the map converge to it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信