用于(粗略)扩散模型期权定价的时间步进深梯度流方法

Antonis Papapantoleon, Jasper Rou
{"title":"用于(粗略)扩散模型期权定价的时间步进深梯度流方法","authors":"Antonis Papapantoleon, Jasper Rou","doi":"arxiv-2403.00746","DOIUrl":null,"url":null,"abstract":"We develop a novel deep learning approach for pricing European options in\ndiffusion models, that can efficiently handle high-dimensional problems\nresulting from Markovian approximations of rough volatility models. The option\npricing partial differential equation is reformulated as an energy minimization\nproblem, which is approximated in a time-stepping fashion by deep artificial\nneural networks. The proposed scheme respects the asymptotic behavior of option\nprices for large levels of moneyness, and adheres to a priori known bounds for\noption prices. The accuracy and efficiency of the proposed method is assessed\nin a series of numerical examples, with particular focus in the lifted Heston\nmodel.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-stepping deep gradient flow method for option pricing in (rough) diffusion models\",\"authors\":\"Antonis Papapantoleon, Jasper Rou\",\"doi\":\"arxiv-2403.00746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a novel deep learning approach for pricing European options in\\ndiffusion models, that can efficiently handle high-dimensional problems\\nresulting from Markovian approximations of rough volatility models. The option\\npricing partial differential equation is reformulated as an energy minimization\\nproblem, which is approximated in a time-stepping fashion by deep artificial\\nneural networks. The proposed scheme respects the asymptotic behavior of option\\nprices for large levels of moneyness, and adheres to a priori known bounds for\\noption prices. The accuracy and efficiency of the proposed method is assessed\\nin a series of numerical examples, with particular focus in the lifted Heston\\nmodel.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.00746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.00746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为欧式期权扩散模型的定价开发了一种新颖的深度学习方法,它可以高效地处理粗糙波动率模型的马尔可夫近似所产生的高维问题。期权定价偏微分方程被重新表述为能量最小化问题(energy minimizationproblem),并通过深度人工神经网络以时间步进的方式对其进行逼近。所提出的方案尊重了期权价格在较大货币性水平下的渐近行为,并遵守了期权价格的先验已知边界。我们在一系列数值示例中评估了所提方法的准确性和效率,并特别关注了提升的赫斯顿模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time-stepping deep gradient flow method for option pricing in (rough) diffusion models
We develop a novel deep learning approach for pricing European options in diffusion models, that can efficiently handle high-dimensional problems resulting from Markovian approximations of rough volatility models. The option pricing partial differential equation is reformulated as an energy minimization problem, which is approximated in a time-stepping fashion by deep artificial neural networks. The proposed scheme respects the asymptotic behavior of option prices for large levels of moneyness, and adheres to a priori known bounds for option prices. The accuracy and efficiency of the proposed method is assessed in a series of numerical examples, with particular focus in the lifted Heston model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信