I. Medina, J. J. Hernández-Gómez, C. Couder-Castañeda
{"title":"大气湍流对卫星通信光上行链路 OOK 和 BPSK 调制的影响","authors":"I. Medina, J. J. Hernández-Gómez, C. Couder-Castañeda","doi":"10.1007/s11235-024-01103-y","DOIUrl":null,"url":null,"abstract":"<p>The constant growth in the demand for communication services has implied an increase the transmitted data rate and bandwidth. Optical satellite communications have provided a solution to this problem, allowing to increase exponentially the transfer rate between the ground station and an in-orbit satellite. However, although this technology offers numerous advantages, such as higher bandwidth, lower power consumption, narrower beam width, as well as greater simplicity of development, when the transmitted light signal passes through the atmosphere it experiences attenuation and fluctuations due to atmospheric turbulence. In this work, optical power fluctuations are modelled by means of a Gamma-Gamma optical turbulence model, so strong turbulence conditions are established according to Rytov’s turbulence theory, considering a measure of the intensity of the optical turbulence when extended to strong fluctuation conditions, depending on the zenith angle variations from 0<span>\\(^\\circ \\)</span> to 60<span>\\(^\\circ \\)</span>. Finally, the performance evaluation of BPSK and OOK modulation schemes for conditions with variations of pointing angle, based on atmospheric attenuation, signal scattering and absorption is given. The results show better performance of the modulation schemes at low zenith pointing angles and wavelengths of 1550 nm, over 850 nm and 1064 nm. Moreover, BPSK modulation shows to be able to provide lower bit error (BER) values for a given signal-to-noise ratio, outperforming OOK modulation scheme in this sense.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"30 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of atmospheric turbulence on OOK and BPSK modulations for satcom optical uplink\",\"authors\":\"I. Medina, J. J. Hernández-Gómez, C. Couder-Castañeda\",\"doi\":\"10.1007/s11235-024-01103-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The constant growth in the demand for communication services has implied an increase the transmitted data rate and bandwidth. Optical satellite communications have provided a solution to this problem, allowing to increase exponentially the transfer rate between the ground station and an in-orbit satellite. However, although this technology offers numerous advantages, such as higher bandwidth, lower power consumption, narrower beam width, as well as greater simplicity of development, when the transmitted light signal passes through the atmosphere it experiences attenuation and fluctuations due to atmospheric turbulence. In this work, optical power fluctuations are modelled by means of a Gamma-Gamma optical turbulence model, so strong turbulence conditions are established according to Rytov’s turbulence theory, considering a measure of the intensity of the optical turbulence when extended to strong fluctuation conditions, depending on the zenith angle variations from 0<span>\\\\(^\\\\circ \\\\)</span> to 60<span>\\\\(^\\\\circ \\\\)</span>. Finally, the performance evaluation of BPSK and OOK modulation schemes for conditions with variations of pointing angle, based on atmospheric attenuation, signal scattering and absorption is given. The results show better performance of the modulation schemes at low zenith pointing angles and wavelengths of 1550 nm, over 850 nm and 1064 nm. Moreover, BPSK modulation shows to be able to provide lower bit error (BER) values for a given signal-to-noise ratio, outperforming OOK modulation scheme in this sense.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01103-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01103-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Impact of atmospheric turbulence on OOK and BPSK modulations for satcom optical uplink
The constant growth in the demand for communication services has implied an increase the transmitted data rate and bandwidth. Optical satellite communications have provided a solution to this problem, allowing to increase exponentially the transfer rate between the ground station and an in-orbit satellite. However, although this technology offers numerous advantages, such as higher bandwidth, lower power consumption, narrower beam width, as well as greater simplicity of development, when the transmitted light signal passes through the atmosphere it experiences attenuation and fluctuations due to atmospheric turbulence. In this work, optical power fluctuations are modelled by means of a Gamma-Gamma optical turbulence model, so strong turbulence conditions are established according to Rytov’s turbulence theory, considering a measure of the intensity of the optical turbulence when extended to strong fluctuation conditions, depending on the zenith angle variations from 0\(^\circ \) to 60\(^\circ \). Finally, the performance evaluation of BPSK and OOK modulation schemes for conditions with variations of pointing angle, based on atmospheric attenuation, signal scattering and absorption is given. The results show better performance of the modulation schemes at low zenith pointing angles and wavelengths of 1550 nm, over 850 nm and 1064 nm. Moreover, BPSK modulation shows to be able to provide lower bit error (BER) values for a given signal-to-noise ratio, outperforming OOK modulation scheme in this sense.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.