数域的 S 相对波利亚群和 S-Ostrowski 之商

IF 0.7 4区 数学 Q2 MATHEMATICS
Ehsan Shahoseini, Abbas Maarefparvar
{"title":"数域的 S 相对波利亚群和 S-Ostrowski 之商","authors":"Ehsan Shahoseini, Abbas Maarefparvar","doi":"10.1007/s41980-023-00858-5","DOIUrl":null,"url":null,"abstract":"<p>Let <i>K</i>/<i>F</i> be a finite extension of number fields and <i>S</i> be a finite set of primes of <i>F</i>, including all the Archimedean ones. In this paper, using some results of González-Avilés (J Reine Angew Math 613:75–97, 2007), we generalize the notions of the relative Pólya group <span>\\({{\\,\\textrm{Po}\\,}}(K/F)\\)</span> (Chabert in J Number Theory 203:360–375, 2019; Maarefparvar and Rajaei in J Number Theory 207:367-384, 2020) and the Ostrowski quotient <span>\\({{\\,\\textrm{Ost}\\,}}(K/F)\\)</span> (Shahoseini et al. in Pac J Math 321(2):415–429, 2022) to their <i>S</i>-versions. Using this approach, we obtain generalizations of some well-known results on the <i>S</i>-capitulation map, including an <i>S</i>-version of Hilbert’s Theorem 94.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The S-Relative Pólya Groups and S-Ostrowski Quotients of Number Fields\",\"authors\":\"Ehsan Shahoseini, Abbas Maarefparvar\",\"doi\":\"10.1007/s41980-023-00858-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>K</i>/<i>F</i> be a finite extension of number fields and <i>S</i> be a finite set of primes of <i>F</i>, including all the Archimedean ones. In this paper, using some results of González-Avilés (J Reine Angew Math 613:75–97, 2007), we generalize the notions of the relative Pólya group <span>\\\\({{\\\\,\\\\textrm{Po}\\\\,}}(K/F)\\\\)</span> (Chabert in J Number Theory 203:360–375, 2019; Maarefparvar and Rajaei in J Number Theory 207:367-384, 2020) and the Ostrowski quotient <span>\\\\({{\\\\,\\\\textrm{Ost}\\\\,}}(K/F)\\\\)</span> (Shahoseini et al. in Pac J Math 321(2):415–429, 2022) to their <i>S</i>-versions. Using this approach, we obtain generalizations of some well-known results on the <i>S</i>-capitulation map, including an <i>S</i>-version of Hilbert’s Theorem 94.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-023-00858-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-023-00858-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 K/F 是数域的有限扩展,S 是 F 的有限素集,包括所有阿基米德素集。在本文中,我们利用冈萨雷斯-阿维莱斯(González-Avilés)的一些结果(J Reine Angew Math 613:75-97, 2007),概括了相对波利亚群({{\,\textrm{Po}\,}(K/F)\)的概念(Chabert in J Number Theory 203:360-375, 2019; Maarefparvar and Rajaei in J Number Theory 207:367-384, 2020)和奥斯特洛夫斯基商(Ostrowski quotient \({{\,\textrm{Ost}\,}}(K/F)\) (Shahoseini et al.in Pac J Math 321(2):415-429, 2022)的 S 版本。利用这种方法,我们得到了关于 S-Capitulation 映射的一些著名结果的一般化,包括希尔伯特定理 94 的 S 版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The S-Relative Pólya Groups and S-Ostrowski Quotients of Number Fields

Let K/F be a finite extension of number fields and S be a finite set of primes of F, including all the Archimedean ones. In this paper, using some results of González-Avilés (J Reine Angew Math 613:75–97, 2007), we generalize the notions of the relative Pólya group \({{\,\textrm{Po}\,}}(K/F)\) (Chabert in J Number Theory 203:360–375, 2019; Maarefparvar and Rajaei in J Number Theory 207:367-384, 2020) and the Ostrowski quotient \({{\,\textrm{Ost}\,}}(K/F)\) (Shahoseini et al. in Pac J Math 321(2):415–429, 2022) to their S-versions. Using this approach, we obtain generalizations of some well-known results on the S-capitulation map, including an S-version of Hilbert’s Theorem 94.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信