带域的隐含克莱因代数和部分正确性的子结构逻辑

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Igor Sedlár
{"title":"带域的隐含克莱因代数和部分正确性的子结构逻辑","authors":"Igor Sedlár","doi":"10.1017/s0960129524000045","DOIUrl":null,"url":null,"abstract":"<p>We show that Kozen and Tiuryn’s substructural logic of partial correctness <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf{S}$</span></span></img></span></span> embeds into the equational theory of Kleene algebra with domain, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf{KAD}$</span></span></img></span></span>. We provide an implicational formulation of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf{KAD}$</span></span></img></span></span> which sets <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf{S}$</span></span></img></span></span> in the context of implicational extensions of Kleene algebra.</p>","PeriodicalId":49855,"journal":{"name":"Mathematical Structures in Computer Science","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implicational Kleene algebra with domain and the substructural logic of partial correctness\",\"authors\":\"Igor Sedlár\",\"doi\":\"10.1017/s0960129524000045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that Kozen and Tiuryn’s substructural logic of partial correctness <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf{S}$</span></span></img></span></span> embeds into the equational theory of Kleene algebra with domain, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf{KAD}$</span></span></img></span></span>. We provide an implicational formulation of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf{KAD}$</span></span></img></span></span> which sets <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301160033202-0894:S0960129524000045:S0960129524000045_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf{S}$</span></span></img></span></span> in the context of implicational extensions of Kleene algebra.</p>\",\"PeriodicalId\":49855,\"journal\":{\"name\":\"Mathematical Structures in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Structures in Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960129524000045\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Structures in Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0960129524000045","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明 Kozen 和 Tiuryn 的部分正确性子结构逻辑 $\mathsf{S}$ 嵌入了有域 Kleene 代数的等式理论 $\mathsf{KAD}$ 中。我们提供了$\mathsf{KAD}$的蕴涵式表述,它将$\mathsf{S}$置于克莱因代数的蕴涵式扩展中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implicational Kleene algebra with domain and the substructural logic of partial correctness

We show that Kozen and Tiuryn’s substructural logic of partial correctness $\mathsf{S}$ embeds into the equational theory of Kleene algebra with domain, $\mathsf{KAD}$. We provide an implicational formulation of $\mathsf{KAD}$ which sets $\mathsf{S}$ in the context of implicational extensions of Kleene algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Structures in Computer Science
Mathematical Structures in Computer Science 工程技术-计算机:理论方法
CiteScore
1.50
自引率
0.00%
发文量
30
审稿时长
12 months
期刊介绍: Mathematical Structures in Computer Science is a journal of theoretical computer science which focuses on the application of ideas from the structural side of mathematics and mathematical logic to computer science. The journal aims to bridge the gap between theoretical contributions and software design, publishing original papers of a high standard and broad surveys with original perspectives in all areas of computing, provided that ideas or results from logic, algebra, geometry, category theory or other areas of logic and mathematics form a basis for the work. The journal welcomes applications to computing based on the use of specific mathematical structures (e.g. topological and order-theoretic structures) as well as on proof-theoretic notions or results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信