各向异性斜坡中双子非圆形隧道周围的渗流场

IF 2.4 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Fengran Wei, Huaning Wang, Guangshang Zeng
{"title":"各向异性斜坡中双子非圆形隧道周围的渗流场","authors":"Fengran Wei, Huaning Wang, Guangshang Zeng","doi":"10.1007/s10040-024-02767-1","DOIUrl":null,"url":null,"abstract":"<p>A new and efficient theoretical model for studying the seepage field around two noncircular tunnels in sloping ground is proposed through analytical derivation. The model considers the exact interaction between two tunnels with arbitrary shapes and locations, as well as the permeability anisotropy, whose principal orientation is along any direction. By applying the Schwartz alternating method and conformal mapping, the analytical solutions of the hydraulic head and pore pressure can be obtained. These solutions strictly satisfy all governing equations and conditions. The correctness and accuracy of the analytical solutions are verified by the good agreement between the theoretical and numerical results. The proposed theoretical model can be applied to the cases with any tunnel shape, slope angle, anisotropic direction and degree. The quantitative influences of the anisotropy ratio, slope angle and tunnel shape on the seepage field are obtained, and some useful charts are provided. The proposed model can efficiently and quickly predict the seepage flow around tunnels in anisotropic sloping ground.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":"123 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The seepage field around twin noncircular tunnels in anisotropic sloping\",\"authors\":\"Fengran Wei, Huaning Wang, Guangshang Zeng\",\"doi\":\"10.1007/s10040-024-02767-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new and efficient theoretical model for studying the seepage field around two noncircular tunnels in sloping ground is proposed through analytical derivation. The model considers the exact interaction between two tunnels with arbitrary shapes and locations, as well as the permeability anisotropy, whose principal orientation is along any direction. By applying the Schwartz alternating method and conformal mapping, the analytical solutions of the hydraulic head and pore pressure can be obtained. These solutions strictly satisfy all governing equations and conditions. The correctness and accuracy of the analytical solutions are verified by the good agreement between the theoretical and numerical results. The proposed theoretical model can be applied to the cases with any tunnel shape, slope angle, anisotropic direction and degree. The quantitative influences of the anisotropy ratio, slope angle and tunnel shape on the seepage field are obtained, and some useful charts are provided. The proposed model can efficiently and quickly predict the seepage flow around tunnels in anisotropic sloping ground.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-024-02767-1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02767-1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过分析推导,提出了一种新的、高效的理论模型,用于研究坡地中两个非圆形隧道周围的渗流场。该模型考虑了两个任意形状和位置的隧道之间的精确相互作用,以及渗透性各向异性,其主要方向沿任意方向。通过应用施瓦茨交替法和保角映射法,可以得到水头和孔隙压力的解析解。这些解严格满足所有控制方程和条件。理论和数值结果之间的良好一致性验证了解析解的正确性和准确性。所提出的理论模型可适用于任何隧道形状、坡角、各向异性方向和程度的情况。得出了各向异性比、坡角和隧道形状对渗流场的定量影响,并提供了一些有用的图表。所提出的模型可以高效、快速地预测各向异性坡地中隧道周围的渗流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The seepage field around twin noncircular tunnels in anisotropic sloping

The seepage field around twin noncircular tunnels in anisotropic sloping

A new and efficient theoretical model for studying the seepage field around two noncircular tunnels in sloping ground is proposed through analytical derivation. The model considers the exact interaction between two tunnels with arbitrary shapes and locations, as well as the permeability anisotropy, whose principal orientation is along any direction. By applying the Schwartz alternating method and conformal mapping, the analytical solutions of the hydraulic head and pore pressure can be obtained. These solutions strictly satisfy all governing equations and conditions. The correctness and accuracy of the analytical solutions are verified by the good agreement between the theoretical and numerical results. The proposed theoretical model can be applied to the cases with any tunnel shape, slope angle, anisotropic direction and degree. The quantitative influences of the anisotropy ratio, slope angle and tunnel shape on the seepage field are obtained, and some useful charts are provided. The proposed model can efficiently and quickly predict the seepage flow around tunnels in anisotropic sloping ground.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hydrogeology Journal
Hydrogeology Journal 地学-地球科学综合
CiteScore
5.40
自引率
7.10%
发文量
128
审稿时长
6 months
期刊介绍: Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries. Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信