关于受限交叉口和向日葵问题

Pub Date : 2024-03-04 DOI:10.1007/s00373-024-02760-1
Jeremy Chizewer
{"title":"关于受限交叉口和向日葵问题","authors":"Jeremy Chizewer","doi":"10.1007/s00373-024-02760-1","DOIUrl":null,"url":null,"abstract":"<p>A sunflower with <i>r</i> petals is a collection of <i>r</i> sets over a ground set <i>X</i> such that every element in <i>X</i> is in no set, every set, or exactly one set. Erdős and Rado [5] showed that a family of sets of size <i>n</i> contains a sunflower if there are more than <span>\\(n!(r-1)^n\\)</span> sets in the family. Alweiss et al. [1] and subsequently, Rao [7] and Bell et al. [2] improved this bound to <span>\\((O(r \\log n))^n\\)</span>. We study the case where the pairwise intersections of the set family are restricted. In particular, we improve the best known bound for set families when the size of the pairwise intersections of any two sets is in a set <i>L</i>. We also present a new bound for the special case when the set <i>L</i> is the nonnegative integers less than or equal to <i>d</i> using the techniques of Alweiss et al. [1].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Restricted Intersections and the Sunflower Problem\",\"authors\":\"Jeremy Chizewer\",\"doi\":\"10.1007/s00373-024-02760-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A sunflower with <i>r</i> petals is a collection of <i>r</i> sets over a ground set <i>X</i> such that every element in <i>X</i> is in no set, every set, or exactly one set. Erdős and Rado [5] showed that a family of sets of size <i>n</i> contains a sunflower if there are more than <span>\\\\(n!(r-1)^n\\\\)</span> sets in the family. Alweiss et al. [1] and subsequently, Rao [7] and Bell et al. [2] improved this bound to <span>\\\\((O(r \\\\log n))^n\\\\)</span>. We study the case where the pairwise intersections of the set family are restricted. In particular, we improve the best known bound for set families when the size of the pairwise intersections of any two sets is in a set <i>L</i>. We also present a new bound for the special case when the set <i>L</i> is the nonnegative integers less than or equal to <i>d</i> using the techniques of Alweiss et al. [1].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02760-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02760-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有 r 个花瓣的向日葵是地面集合 X 上 r 个集合的集合,这样 X 中的每个元素都不在任何集合中,也不在每个集合中,或者正好在一个集合中。Erdős 和 Rado [5] 证明,如果大小为 n 的集合族中有多于 \(n!(r-1)^n\) 个集合,那么这个集合族就包含一朵向日葵。Alweiss等人[1]以及随后的Rao[7]和Bell等人[2]将这个约束改进为((O(r\log n))^n\)。我们研究的是集合族的成对交集受到限制的情况。我们还利用 Alweiss 等人[1]的技术,为集合 L 是小于或等于 d 的非负整数的特殊情况提出了一个新的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Restricted Intersections and the Sunflower Problem

A sunflower with r petals is a collection of r sets over a ground set X such that every element in X is in no set, every set, or exactly one set. Erdős and Rado [5] showed that a family of sets of size n contains a sunflower if there are more than \(n!(r-1)^n\) sets in the family. Alweiss et al. [1] and subsequently, Rao [7] and Bell et al. [2] improved this bound to \((O(r \log n))^n\). We study the case where the pairwise intersections of the set family are restricted. In particular, we improve the best known bound for set families when the size of the pairwise intersections of any two sets is in a set L. We also present a new bound for the special case when the set L is the nonnegative integers less than or equal to d using the techniques of Alweiss et al. [1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信