T. I. Borodina, V. V. Glazkov, Yu. P. Ivochkin, K. G. Kubrikov, O. A. Sinkevich, I. O. Teplyakov, S. M. Yudin
{"title":"金属样品在高频感应器中熔化过程中液滴的密集发射","authors":"T. I. Borodina, V. V. Glazkov, Yu. P. Ivochkin, K. G. Kubrikov, O. A. Sinkevich, I. O. Teplyakov, S. M. Yudin","doi":"10.1134/s0018151x23020049","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The results of experimental and computational studies of the processes accompanying the melting of metal samples heated in air using induced currents are presented. The materials used for the experimental models—spheres and cylinders with a characteristic size of 10 mm—were pure iron, nonferrous metals, and various grades of steel. An unusual physical effect observed in experiments with iron and steels and associated with the intense release of sparks from the samples was studied: small brightly glowing metal droplets. A possible thermomechanical mechanism for the emission of droplets is proposed, based on the occurrence of excess melt pressure during metal melting inside the volume of the sample, limited by the resulting solid shell consisting of iron oxides. Numerical calculations were carried out, the results of which generally confirm the hypothesis presented.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intensive Emission of Droplets during Melting of Metal Samples in a High-Frequency Inductor\",\"authors\":\"T. I. Borodina, V. V. Glazkov, Yu. P. Ivochkin, K. G. Kubrikov, O. A. Sinkevich, I. O. Teplyakov, S. M. Yudin\",\"doi\":\"10.1134/s0018151x23020049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The results of experimental and computational studies of the processes accompanying the melting of metal samples heated in air using induced currents are presented. The materials used for the experimental models—spheres and cylinders with a characteristic size of 10 mm—were pure iron, nonferrous metals, and various grades of steel. An unusual physical effect observed in experiments with iron and steels and associated with the intense release of sparks from the samples was studied: small brightly glowing metal droplets. A possible thermomechanical mechanism for the emission of droplets is proposed, based on the occurrence of excess melt pressure during metal melting inside the volume of the sample, limited by the resulting solid shell consisting of iron oxides. Numerical calculations were carried out, the results of which generally confirm the hypothesis presented.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23020049\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23020049","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Intensive Emission of Droplets during Melting of Metal Samples in a High-Frequency Inductor
Abstract
The results of experimental and computational studies of the processes accompanying the melting of metal samples heated in air using induced currents are presented. The materials used for the experimental models—spheres and cylinders with a characteristic size of 10 mm—were pure iron, nonferrous metals, and various grades of steel. An unusual physical effect observed in experiments with iron and steels and associated with the intense release of sparks from the samples was studied: small brightly glowing metal droplets. A possible thermomechanical mechanism for the emission of droplets is proposed, based on the occurrence of excess melt pressure during metal melting inside the volume of the sample, limited by the resulting solid shell consisting of iron oxides. Numerical calculations were carried out, the results of which generally confirm the hypothesis presented.
期刊介绍:
High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.