PAULINA CECCHI BERNALES, MARÍA ISABEL CORTEZ, JAIME GÓMEZ
{"title":"非可门群上托普利兹子移的不变量纲","authors":"PAULINA CECCHI BERNALES, MARÍA ISABEL CORTEZ, JAIME GÓMEZ","doi":"10.1017/etds.2024.16","DOIUrl":null,"url":null,"abstract":"<p>Let <span>G</span> be a countable residually finite group (for instance, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb F}_2$</span></span></img></span></span>) and let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\overleftarrow {G}$</span></span></img></span></span> be a totally disconnected metric compactification of <span>G</span> equipped with the action of <span>G</span> by left multiplication. For every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$r\\geq 1$</span></span></img></span></span>, we construct a Toeplitz <span>G</span>-subshift <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(X,\\sigma ,G)$</span></span></img></span></span>, which is an almost one-to-one extension of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\overleftarrow {G}$</span></span></img></span></span>, having <span>r</span> ergodic measures <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\nu _1, \\ldots ,\\nu _r$</span></span></img></span></span> such that for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq i\\leq r$</span></span></img></span></span>, the measure-theoretic dynamical system <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$(X,\\sigma ,G,\\nu _i)$</span></span></img></span></span> is isomorphic to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\overleftarrow {G}$</span></span></img></span></span> endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant measures of Toeplitz subshifts on non-amenable groups\",\"authors\":\"PAULINA CECCHI BERNALES, MARÍA ISABEL CORTEZ, JAIME GÓMEZ\",\"doi\":\"10.1017/etds.2024.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>G</span> be a countable residually finite group (for instance, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb F}_2$</span></span></img></span></span>) and let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overleftarrow {G}$</span></span></img></span></span> be a totally disconnected metric compactification of <span>G</span> equipped with the action of <span>G</span> by left multiplication. For every <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$r\\\\geq 1$</span></span></img></span></span>, we construct a Toeplitz <span>G</span>-subshift <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(X,\\\\sigma ,G)$</span></span></img></span></span>, which is an almost one-to-one extension of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overleftarrow {G}$</span></span></img></span></span>, having <span>r</span> ergodic measures <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nu _1, \\\\ldots ,\\\\nu _r$</span></span></img></span></span> such that for every <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1\\\\leq i\\\\leq r$</span></span></img></span></span>, the measure-theoretic dynamical system <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(X,\\\\sigma ,G,\\\\nu _i)$</span></span></img></span></span> is isomorphic to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240301125356903-0281:S0143385724000166:S0143385724000166_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overleftarrow {G}$</span></span></img></span></span> endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个可数余有限群(例如,${\mathbb F}_2$),并让 $\overleftarrow {G}$ 是 G 的一个完全断开的度量紧凑化,配备有 G 的左乘作用。对于每一个 $r\geq 1$,我们构造一个托普利兹 G 子移位 $(X,\sigma,G)$,它是 $\overleftarrow {G}$ 的一个几乎一一对应的扩展,有 r 个遍历度量 $\nu _1, \ldots 、\nu _r$,这样对于每1$\leq i\leq r$,度量理论动力系统$(X,\sigma ,G,\nu _i)$与赋予哈尔度量的$overleftarrow {G}$是同构的。我们提出的构造是通用的(适用于可驯化和不可驯化的残余有限群);然而,我们指出了当作用群不可驯化时可能出现的差异和障碍。
Invariant measures of Toeplitz subshifts on non-amenable groups
Let G be a countable residually finite group (for instance, ${\mathbb F}_2$) and let $\overleftarrow {G}$ be a totally disconnected metric compactification of G equipped with the action of G by left multiplication. For every $r\geq 1$, we construct a Toeplitz G-subshift $(X,\sigma ,G)$, which is an almost one-to-one extension of $\overleftarrow {G}$, having r ergodic measures $\nu _1, \ldots ,\nu _r$ such that for every $1\leq i\leq r$, the measure-theoretic dynamical system $(X,\sigma ,G,\nu _i)$ is isomorphic to $\overleftarrow {G}$ endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.