{"title":"通过汉密尔顿原理得出的传热欧拉双曲模型:分析和数值研究","authors":"Firas Dhaouadi, Sergey Gavrilyuk","doi":"10.1098/rspa.2023.0440","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new model for heat transfer in compressible fluid flows. The model is derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a setting where the entropy conservation is recovered as an Euler–Lagrange equation. A sufficient criterion for the hyperbolicity of the model is formulated. The governing equations are asymptotically consistent with the Euler equations for compressible heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–Hugoniot conditions and Clausius–Duhem inequality is performed for a specific choice of the equation of state. In particular, this reveals that contact discontinuities cannot exist while expansion waves and compression fans are possible solutions to the governing equations. Evidence of these properties is provided on a set of numerical test cases.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eulerian hyperbolic model for heat transfer derived via Hamilton’s principle: analytical and numerical study\",\"authors\":\"Firas Dhaouadi, Sergey Gavrilyuk\",\"doi\":\"10.1098/rspa.2023.0440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new model for heat transfer in compressible fluid flows. The model is derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a setting where the entropy conservation is recovered as an Euler–Lagrange equation. A sufficient criterion for the hyperbolicity of the model is formulated. The governing equations are asymptotically consistent with the Euler equations for compressible heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–Hugoniot conditions and Clausius–Duhem inequality is performed for a specific choice of the equation of state. In particular, this reveals that contact discontinuities cannot exist while expansion waves and compression fans are possible solutions to the governing equations. Evidence of these properties is provided on a set of numerical test cases.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0440\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0440","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
An Eulerian hyperbolic model for heat transfer derived via Hamilton’s principle: analytical and numerical study
In this paper, we present a new model for heat transfer in compressible fluid flows. The model is derived from Hamilton’s principle of stationary action in Eulerian coordinates, in a setting where the entropy conservation is recovered as an Euler–Lagrange equation. A sufficient criterion for the hyperbolicity of the model is formulated. The governing equations are asymptotically consistent with the Euler equations for compressible heat conducting fluids, provided the addition of suitable relaxation terms. A study of the Rankine–Hugoniot conditions and Clausius–Duhem inequality is performed for a specific choice of the equation of state. In particular, this reveals that contact discontinuities cannot exist while expansion waves and compression fans are possible solutions to the governing equations. Evidence of these properties is provided on a set of numerical test cases.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.