Alexander L. Kholmetskii, Oleg V. Missevitch, Tolga Yarman
{"title":"电磁能量和动量在阿哈诺夫-玻姆效应中的作用","authors":"Alexander L. Kholmetskii, Oleg V. Missevitch, Tolga Yarman","doi":"10.1098/rspa.2023.0286","DOIUrl":null,"url":null,"abstract":"We analyse the physical meaning of the Aharonov–Bohm (AB) phase based on its representation through electromagnetic (EM) potentials as a sum of four components, which, in addition to the known electric and magnetic phase components, contains two more terms recently disclosed by our team in the analysis of quantum phase effects for dipoles and charges, and which we named the complementary electric AB phase and the complementary magnetic AB phase. Using the complete expression for the AB phase, we reveal that the phase component, explicitly depending on time, is determined by the interactional electric energy, while the phase component, explicitly depending on the velocity of charge, is determined by the interactional EM momentum for an isolated system ‘source of EM field and charge’. These findings shed new light on the origin of the AB phase and, in particular, allow us to generalize the de Broglie relationship and the Heisenberg uncertainty relations for a charged particle in an EM field.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of electromagnetic energy and momentum in the Aharonov–Bohm effect\",\"authors\":\"Alexander L. Kholmetskii, Oleg V. Missevitch, Tolga Yarman\",\"doi\":\"10.1098/rspa.2023.0286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse the physical meaning of the Aharonov–Bohm (AB) phase based on its representation through electromagnetic (EM) potentials as a sum of four components, which, in addition to the known electric and magnetic phase components, contains two more terms recently disclosed by our team in the analysis of quantum phase effects for dipoles and charges, and which we named the complementary electric AB phase and the complementary magnetic AB phase. Using the complete expression for the AB phase, we reveal that the phase component, explicitly depending on time, is determined by the interactional electric energy, while the phase component, explicitly depending on the velocity of charge, is determined by the interactional EM momentum for an isolated system ‘source of EM field and charge’. These findings shed new light on the origin of the AB phase and, in particular, allow us to generalize the de Broglie relationship and the Heisenberg uncertainty relations for a charged particle in an EM field.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0286\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0286","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
除了已知的电相分量和磁相分量之外,我们还分析了阿哈诺夫-玻姆(AB)相的物理意义,并将其通过电磁(EM)势表示为四个分量之和,其中还包含我们团队最近在分析偶极子和电荷的量子相位效应时发现的另外两个项,我们将其命名为互补电AB相和互补磁AB相。利用 AB 相的完整表达式,我们发现,对于一个孤立的系统 "电磁场和电荷源 "来说,明确取决于时间的相分量是由相互作用电能决定的,而明确取决于电荷速度的相分量是由相互作用电磁动量决定的。这些发现为我们揭示 AB 相的起源提供了新的思路,特别是使我们能够概括电磁场中带电粒子的德布罗格利关系和海森堡不确定性关系。
Role of electromagnetic energy and momentum in the Aharonov–Bohm effect
We analyse the physical meaning of the Aharonov–Bohm (AB) phase based on its representation through electromagnetic (EM) potentials as a sum of four components, which, in addition to the known electric and magnetic phase components, contains two more terms recently disclosed by our team in the analysis of quantum phase effects for dipoles and charges, and which we named the complementary electric AB phase and the complementary magnetic AB phase. Using the complete expression for the AB phase, we reveal that the phase component, explicitly depending on time, is determined by the interactional electric energy, while the phase component, explicitly depending on the velocity of charge, is determined by the interactional EM momentum for an isolated system ‘source of EM field and charge’. These findings shed new light on the origin of the AB phase and, in particular, allow us to generalize the de Broglie relationship and the Heisenberg uncertainty relations for a charged particle in an EM field.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.