论非稳态薄膜沸腾过程中的蒸汽薄膜失稳机制

IF 1 4区 物理与天体物理 Q4 PHYSICS, APPLIED
P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev
{"title":"论非稳态薄膜沸腾过程中的蒸汽薄膜失稳机制","authors":"P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev","doi":"10.1134/s0018151x23020086","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"110 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling\",\"authors\":\"P. K. Kanin, V. V. Yagov, A. R. Zabirov, I. A. Molotova, M. M. Vinogradov, V. A. Ryazantsev\",\"doi\":\"10.1134/s0018151x23020086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23020086\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23020086","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们介绍了镍和硬铝球在过冷水和乙醇中冷却的新实验数据,并回顾了我们从 2015 年到 2022 年的综合实验研究。阐明了高温体非稳态冷却过程中蒸汽膜失稳机制的假设。此外,还提出了用于估算饱和液体和过冷液体中薄膜沸腾停止时的温度水头的新关联。推导出的方程与大量专有实验数据以及其他研究人员的数据进行了验证,在定性和定量方面都与实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling

On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling

Abstract

We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature
High Temperature 物理-物理:应用
CiteScore
1.50
自引率
40.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信