{"title":"防止植入式脉冲发生器在脑深部刺激中突然停止工作:系统回顾与方案建议》。","authors":"Spencer J Oslin, Helen H Shi, Andrew K Conner","doi":"10.1159/000535880","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Deep brain stimulation (DBS) requires a consistent electrical supply from the implantable pulse generator (IPG). Patients may struggle to monitor their IPG, risking severe complications in battery failure. This review assesses current literature on DBS IPG battery life management and proposes a protocol for healthcare providers.</p><p><strong>Methods: </strong>A literature search using four databases identified best practices for DBS IPG management. Studies were appraised for IPG management guidelines, categorized as qualitative, quantitative, or both.</p><p><strong>Results: </strong>Of 408 citations, only seven studies were eligible, none providing clear patient management strategies. Current guidelines lack specificity, relying on clinician suggestions.</p><p><strong>Conclusion: </strong>Limited guidelines exist for IPG management. Specificity and adaptability to emerging technology are crucial. The findings highlight the need for specificity in patients' needs and adaptability to emerging technology in future studies. To address this need, we developed a protocol for DBS IPG management that we have implemented at our own institution. Further research is needed for effective DBS IPG battery life management, preventing therapy cessation complications.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preventing Sudden Cessation of Implantable Pulse Generators in Deep Brain Stimulation: A Systematic Review and Protocol Proposal.\",\"authors\":\"Spencer J Oslin, Helen H Shi, Andrew K Conner\",\"doi\":\"10.1159/000535880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Deep brain stimulation (DBS) requires a consistent electrical supply from the implantable pulse generator (IPG). Patients may struggle to monitor their IPG, risking severe complications in battery failure. This review assesses current literature on DBS IPG battery life management and proposes a protocol for healthcare providers.</p><p><strong>Methods: </strong>A literature search using four databases identified best practices for DBS IPG management. Studies were appraised for IPG management guidelines, categorized as qualitative, quantitative, or both.</p><p><strong>Results: </strong>Of 408 citations, only seven studies were eligible, none providing clear patient management strategies. Current guidelines lack specificity, relying on clinician suggestions.</p><p><strong>Conclusion: </strong>Limited guidelines exist for IPG management. Specificity and adaptability to emerging technology are crucial. The findings highlight the need for specificity in patients' needs and adaptability to emerging technology in future studies. To address this need, we developed a protocol for DBS IPG management that we have implemented at our own institution. Further research is needed for effective DBS IPG battery life management, preventing therapy cessation complications.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000535880\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000535880","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preventing Sudden Cessation of Implantable Pulse Generators in Deep Brain Stimulation: A Systematic Review and Protocol Proposal.
Introduction: Deep brain stimulation (DBS) requires a consistent electrical supply from the implantable pulse generator (IPG). Patients may struggle to monitor their IPG, risking severe complications in battery failure. This review assesses current literature on DBS IPG battery life management and proposes a protocol for healthcare providers.
Methods: A literature search using four databases identified best practices for DBS IPG management. Studies were appraised for IPG management guidelines, categorized as qualitative, quantitative, or both.
Results: Of 408 citations, only seven studies were eligible, none providing clear patient management strategies. Current guidelines lack specificity, relying on clinician suggestions.
Conclusion: Limited guidelines exist for IPG management. Specificity and adaptability to emerging technology are crucial. The findings highlight the need for specificity in patients' needs and adaptability to emerging technology in future studies. To address this need, we developed a protocol for DBS IPG management that we have implemented at our own institution. Further research is needed for effective DBS IPG battery life management, preventing therapy cessation complications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.