Gerald Gartlehner, Leila Kahwati, Rainer Hilscher, Ian Thomas, Shannon Kugley, Karen Crotty, Meera Viswanathan, Barbara Nussbaumer-Streit, Graham Booth, Nathaniel Erskine, Amanda Konet, Robert Chew
{"title":"使用大型语言模型进行证据综合的数据提取:概念验证研究。","authors":"Gerald Gartlehner, Leila Kahwati, Rainer Hilscher, Ian Thomas, Shannon Kugley, Karen Crotty, Meera Viswanathan, Barbara Nussbaumer-Streit, Graham Booth, Nathaniel Erskine, Amanda Konet, Robert Chew","doi":"10.1002/jrsm.1710","DOIUrl":null,"url":null,"abstract":"<p>Data extraction is a crucial, yet labor-intensive and error-prone part of evidence synthesis. To date, efforts to harness machine learning for enhancing efficiency of the data extraction process have fallen short of achieving sufficient accuracy and usability. With the release of large language models (LLMs), new possibilities have emerged to increase efficiency and accuracy of data extraction for evidence synthesis. The objective of this proof-of-concept study was to assess the performance of an LLM (Claude 2) in extracting data elements from published studies, compared with human data extraction as employed in systematic reviews. Our analysis utilized a convenience sample of 10 English-language, open-access publications of randomized controlled trials included in a single systematic review. We selected 16 distinct types of data, posing varying degrees of difficulty (160 data elements across 10 studies). We used the browser version of Claude 2 to upload the portable document format of each publication and then prompted the model for each data element. Across 160 data elements, Claude 2 demonstrated an overall accuracy of 96.3% with a high test–retest reliability (replication 1: 96.9%; replication 2: 95.0% accuracy). Overall, Claude 2 made 6 errors on 160 data items. The most common errors (<i>n</i> = 4) were missed data items. Importantly, Claude 2's ease of use was high; it required no technical expertise or labeled training data for effective operation (i.e., zero-shot learning). Based on findings of our proof-of-concept study, leveraging LLMs has the potential to substantially enhance the efficiency and accuracy of data extraction for evidence syntheses.</p>","PeriodicalId":226,"journal":{"name":"Research Synthesis Methods","volume":"15 4","pages":"576-589"},"PeriodicalIF":5.0000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1710","citationCount":"0","resultStr":"{\"title\":\"Data extraction for evidence synthesis using a large language model: A proof-of-concept study\",\"authors\":\"Gerald Gartlehner, Leila Kahwati, Rainer Hilscher, Ian Thomas, Shannon Kugley, Karen Crotty, Meera Viswanathan, Barbara Nussbaumer-Streit, Graham Booth, Nathaniel Erskine, Amanda Konet, Robert Chew\",\"doi\":\"10.1002/jrsm.1710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Data extraction is a crucial, yet labor-intensive and error-prone part of evidence synthesis. To date, efforts to harness machine learning for enhancing efficiency of the data extraction process have fallen short of achieving sufficient accuracy and usability. With the release of large language models (LLMs), new possibilities have emerged to increase efficiency and accuracy of data extraction for evidence synthesis. The objective of this proof-of-concept study was to assess the performance of an LLM (Claude 2) in extracting data elements from published studies, compared with human data extraction as employed in systematic reviews. Our analysis utilized a convenience sample of 10 English-language, open-access publications of randomized controlled trials included in a single systematic review. We selected 16 distinct types of data, posing varying degrees of difficulty (160 data elements across 10 studies). We used the browser version of Claude 2 to upload the portable document format of each publication and then prompted the model for each data element. Across 160 data elements, Claude 2 demonstrated an overall accuracy of 96.3% with a high test–retest reliability (replication 1: 96.9%; replication 2: 95.0% accuracy). Overall, Claude 2 made 6 errors on 160 data items. The most common errors (<i>n</i> = 4) were missed data items. Importantly, Claude 2's ease of use was high; it required no technical expertise or labeled training data for effective operation (i.e., zero-shot learning). Based on findings of our proof-of-concept study, leveraging LLMs has the potential to substantially enhance the efficiency and accuracy of data extraction for evidence syntheses.</p>\",\"PeriodicalId\":226,\"journal\":{\"name\":\"Research Synthesis Methods\",\"volume\":\"15 4\",\"pages\":\"576-589\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1710\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Synthesis Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1710\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Synthesis Methods","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1710","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Data extraction for evidence synthesis using a large language model: A proof-of-concept study
Data extraction is a crucial, yet labor-intensive and error-prone part of evidence synthesis. To date, efforts to harness machine learning for enhancing efficiency of the data extraction process have fallen short of achieving sufficient accuracy and usability. With the release of large language models (LLMs), new possibilities have emerged to increase efficiency and accuracy of data extraction for evidence synthesis. The objective of this proof-of-concept study was to assess the performance of an LLM (Claude 2) in extracting data elements from published studies, compared with human data extraction as employed in systematic reviews. Our analysis utilized a convenience sample of 10 English-language, open-access publications of randomized controlled trials included in a single systematic review. We selected 16 distinct types of data, posing varying degrees of difficulty (160 data elements across 10 studies). We used the browser version of Claude 2 to upload the portable document format of each publication and then prompted the model for each data element. Across 160 data elements, Claude 2 demonstrated an overall accuracy of 96.3% with a high test–retest reliability (replication 1: 96.9%; replication 2: 95.0% accuracy). Overall, Claude 2 made 6 errors on 160 data items. The most common errors (n = 4) were missed data items. Importantly, Claude 2's ease of use was high; it required no technical expertise or labeled training data for effective operation (i.e., zero-shot learning). Based on findings of our proof-of-concept study, leveraging LLMs has the potential to substantially enhance the efficiency and accuracy of data extraction for evidence syntheses.
期刊介绍:
Research Synthesis Methods is a reputable, peer-reviewed journal that focuses on the development and dissemination of methods for conducting systematic research synthesis. Our aim is to advance the knowledge and application of research synthesis methods across various disciplines.
Our journal provides a platform for the exchange of ideas and knowledge related to designing, conducting, analyzing, interpreting, reporting, and applying research synthesis. While research synthesis is commonly practiced in the health and social sciences, our journal also welcomes contributions from other fields to enrich the methodologies employed in research synthesis across scientific disciplines.
By bridging different disciplines, we aim to foster collaboration and cross-fertilization of ideas, ultimately enhancing the quality and effectiveness of research synthesis methods. Whether you are a researcher, practitioner, or stakeholder involved in research synthesis, our journal strives to offer valuable insights and practical guidance for your work.