Sankarshan Damle, Aleksei Triastcyn, Boi Faltings, Sujit Gujar
{"title":"差分私有多代理约束优化","authors":"Sankarshan Damle, Aleksei Triastcyn, Boi Faltings, Sujit Gujar","doi":"10.1007/s10458-024-09636-x","DOIUrl":null,"url":null,"abstract":"<div><p>Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as vehicle routing, radio frequency assignments, and distributed scheduling of meetings. However, optimization scenarios may involve multiple agents wanting to protect their preferences’ privacy. Researchers propose privacy-preserving algorithms for DCOPs that provide improved privacy protection through cryptographic primitives such as partial homomorphic encryption, secret-sharing, and secure multiparty computation. These privacy benefits come at the expense of high computational complexity. Moreover, such an approach does not constitute a rigorous privacy guarantee for optimization outcomes, as the result of the computation may compromise agents’ preferences. In this work, we show how to achieve privacy, specifically Differential Privacy, by randomizing the solving process. In particular, we present P-Gibbs, which adapts the current state-of-the-art algorithm for DCOPs, namely SD-Gibbs, to obtain differential privacy guarantees with much higher computational efficiency. Experiments on benchmark problems such as Ising, graph-coloring, and meeting-scheduling show P-Gibbs’ privacy and performance trade-off for varying privacy budgets and the SD-Gibbs algorithm. More concretely, we empirically show that P-Gibbs provides fair solutions for competitive privacy budgets.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"38 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially private multi-agent constraint optimization\",\"authors\":\"Sankarshan Damle, Aleksei Triastcyn, Boi Faltings, Sujit Gujar\",\"doi\":\"10.1007/s10458-024-09636-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as vehicle routing, radio frequency assignments, and distributed scheduling of meetings. However, optimization scenarios may involve multiple agents wanting to protect their preferences’ privacy. Researchers propose privacy-preserving algorithms for DCOPs that provide improved privacy protection through cryptographic primitives such as partial homomorphic encryption, secret-sharing, and secure multiparty computation. These privacy benefits come at the expense of high computational complexity. Moreover, such an approach does not constitute a rigorous privacy guarantee for optimization outcomes, as the result of the computation may compromise agents’ preferences. In this work, we show how to achieve privacy, specifically Differential Privacy, by randomizing the solving process. In particular, we present P-Gibbs, which adapts the current state-of-the-art algorithm for DCOPs, namely SD-Gibbs, to obtain differential privacy guarantees with much higher computational efficiency. Experiments on benchmark problems such as Ising, graph-coloring, and meeting-scheduling show P-Gibbs’ privacy and performance trade-off for varying privacy budgets and the SD-Gibbs algorithm. More concretely, we empirically show that P-Gibbs provides fair solutions for competitive privacy budgets.</p></div>\",\"PeriodicalId\":55586,\"journal\":{\"name\":\"Autonomous Agents and Multi-Agent Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Agents and Multi-Agent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10458-024-09636-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09636-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as vehicle routing, radio frequency assignments, and distributed scheduling of meetings. However, optimization scenarios may involve multiple agents wanting to protect their preferences’ privacy. Researchers propose privacy-preserving algorithms for DCOPs that provide improved privacy protection through cryptographic primitives such as partial homomorphic encryption, secret-sharing, and secure multiparty computation. These privacy benefits come at the expense of high computational complexity. Moreover, such an approach does not constitute a rigorous privacy guarantee for optimization outcomes, as the result of the computation may compromise agents’ preferences. In this work, we show how to achieve privacy, specifically Differential Privacy, by randomizing the solving process. In particular, we present P-Gibbs, which adapts the current state-of-the-art algorithm for DCOPs, namely SD-Gibbs, to obtain differential privacy guarantees with much higher computational efficiency. Experiments on benchmark problems such as Ising, graph-coloring, and meeting-scheduling show P-Gibbs’ privacy and performance trade-off for varying privacy budgets and the SD-Gibbs algorithm. More concretely, we empirically show that P-Gibbs provides fair solutions for competitive privacy budgets.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.