混合规范空间上的分数积分I

IF 0.7 4区 数学 Q2 MATHEMATICS
Feng Guo, Xiang Fang, Shengzhao Hou, Xiaolin Zhu
{"title":"混合规范空间上的分数积分I","authors":"Feng Guo, Xiang Fang, Shengzhao Hou, Xiaolin Zhu","doi":"10.1007/s11785-024-01488-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper we characterize completely the septuple </p><span>$$\\begin{aligned} (p_1, p_2, q_1, q_2; \\alpha _1, \\alpha _2; t) \\in (0, \\infty ]^4 \\times (0, \\infty )^2 \\times {\\mathbb {C}} \\end{aligned}$$</span><p>such that the fractional integration operator <span>\\({\\mathfrak {I}}_t\\)</span>, of order <span>\\(t \\in {\\mathbb {C}}\\)</span>, is bounded between two mixed norm spaces: </p><span>$$\\begin{aligned} {\\mathfrak {I}}_t: H(p_1, q_1, \\alpha _1) \\rightarrow H(p_2, q_2, \\alpha _2). \\end{aligned}$$</span><p>We treat three types of definitions for <span>\\({\\mathfrak {I}}_t\\)</span>: Hadamard, Flett, and Riemann-Liouville. Our main result (Theorem 2) extends that of Buckley-Koskela-Vukotić in 1999 on the Bergman spaces (Theorem B), and the case <span>\\(t=0\\)</span> recovers the embedding theorem of Arévalo in 2015 (Corollary 3). The corresponding result for the Hardy spaces <span>\\(H^p({\\mathbb {D}})\\)</span>, of type Riemann-Liouville, is due to Hardy and Littlewood in 1932.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Integration on Mixed Norm Spaces. I\",\"authors\":\"Feng Guo, Xiang Fang, Shengzhao Hou, Xiaolin Zhu\",\"doi\":\"10.1007/s11785-024-01488-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we characterize completely the septuple </p><span>$$\\\\begin{aligned} (p_1, p_2, q_1, q_2; \\\\alpha _1, \\\\alpha _2; t) \\\\in (0, \\\\infty ]^4 \\\\times (0, \\\\infty )^2 \\\\times {\\\\mathbb {C}} \\\\end{aligned}$$</span><p>such that the fractional integration operator <span>\\\\({\\\\mathfrak {I}}_t\\\\)</span>, of order <span>\\\\(t \\\\in {\\\\mathbb {C}}\\\\)</span>, is bounded between two mixed norm spaces: </p><span>$$\\\\begin{aligned} {\\\\mathfrak {I}}_t: H(p_1, q_1, \\\\alpha _1) \\\\rightarrow H(p_2, q_2, \\\\alpha _2). \\\\end{aligned}$$</span><p>We treat three types of definitions for <span>\\\\({\\\\mathfrak {I}}_t\\\\)</span>: Hadamard, Flett, and Riemann-Liouville. Our main result (Theorem 2) extends that of Buckley-Koskela-Vukotić in 1999 on the Bergman spaces (Theorem B), and the case <span>\\\\(t=0\\\\)</span> recovers the embedding theorem of Arévalo in 2015 (Corollary 3). The corresponding result for the Hardy spaces <span>\\\\(H^p({\\\\mathbb {D}})\\\\)</span>, of type Riemann-Liouville, is due to Hardy and Littlewood in 1932.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01488-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01488-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们完全描述了$$begin{aligned} (p_1, p_2, q_1, q_2; \alpha _1, \alpha _2; t) \in (0, \infty ]^4 \times (0, \infty )^2 \times {\mathbb {C}} 的七元组$$begin{aligned}(p_1, p_2, q_1, q_2; \alpha _1, \alpha _2; t)。\end{aligned}$$使得阶数为(t 在 {\mathbb {C}})的分数积分算子 \({\mathfrak {I}}_t\) 在两个混合规范空间之间有界:$$begin{aligned} {\mathfrak {I}}_t:H(p_1, q_1, \alpha _1) \rightarrow H(p_2, q_2, \alpha _2).\end{aligned}$$我们处理了三种关于 \({\mathfrak {I}}_t\) 的定义:Hadamard、Flett 和 Riemann-Liouville 定义。我们的主要结果(定理 2)扩展了巴克利-科斯克拉-武科蒂奇(Buckley-Koskela-Vukotić)1999 年关于伯格曼空间的结果(定理 B),而 \(t=0\) 的情况则恢复了阿雷瓦洛(Arévalo)2015 年的嵌入定理(推论 3)。黎曼-刘维尔类型的哈代空间 \(H^p({\mathbb {D}})\ 的相应结果是哈代和利特尔伍德在 1932 年得出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Integration on Mixed Norm Spaces. I

In this paper we characterize completely the septuple

$$\begin{aligned} (p_1, p_2, q_1, q_2; \alpha _1, \alpha _2; t) \in (0, \infty ]^4 \times (0, \infty )^2 \times {\mathbb {C}} \end{aligned}$$

such that the fractional integration operator \({\mathfrak {I}}_t\), of order \(t \in {\mathbb {C}}\), is bounded between two mixed norm spaces:

$$\begin{aligned} {\mathfrak {I}}_t: H(p_1, q_1, \alpha _1) \rightarrow H(p_2, q_2, \alpha _2). \end{aligned}$$

We treat three types of definitions for \({\mathfrak {I}}_t\): Hadamard, Flett, and Riemann-Liouville. Our main result (Theorem 2) extends that of Buckley-Koskela-Vukotić in 1999 on the Bergman spaces (Theorem B), and the case \(t=0\) recovers the embedding theorem of Arévalo in 2015 (Corollary 3). The corresponding result for the Hardy spaces \(H^p({\mathbb {D}})\), of type Riemann-Liouville, is due to Hardy and Littlewood in 1932.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信