尊重伽罗瓦自动形态的有限群代表矩阵

IF 0.5 4区 数学 Q3 MATHEMATICS
David J. Benson
{"title":"尊重伽罗瓦自动形态的有限群代表矩阵","authors":"David J. Benson","doi":"10.1007/s00013-023-01963-x","DOIUrl":null,"url":null,"abstract":"<div><p>We are given a finite group <i>H</i>, an automorphism <span>\\(\\tau \\)</span> of <i>H</i> of order <i>r</i>, a Galois extension <i>L</i>/<i>K</i> of fields of characteristic zero with cyclic Galois group <span>\\(\\langle \\sigma \\rangle \\)</span> of order <i>r</i>, and an absolutely irreducible representation <span>\\(\\rho :H\\rightarrow \\textsf {GL} (n,L)\\)</span> such that the action of <span>\\(\\tau \\)</span> on the character of <span>\\(\\rho \\)</span> is the same as the action of <span>\\(\\sigma \\)</span>. Then the following are equivalent.</p><p>   <span>\\(\\bullet \\)</span> <span>\\(\\rho \\)</span> is equivalent to a representation <span>\\(\\rho ':H\\rightarrow \\textsf {GL} (n,L)\\)</span> such that the action of <span>\\(\\sigma \\)</span> on the entries of the matrices corresponds to the action of <span>\\(\\tau \\)</span> on <i>H</i>, and</p><p>   <span>\\(\\bullet \\)</span> the induced representation <span>\\(\\textsf {ind} _{H,H\\rtimes \\langle \\tau \\rangle }(\\rho )\\)</span> has Schur index one; that is, it is similar to a representation over <i>K</i>.</p><p>    As examples, we discuss a three dimensional irreducible representation of <span>\\(A_5\\)</span> over <span>\\(\\mathbb {Q}[\\sqrt{5}]\\)</span> and a four dimensional irreducible representation of the double cover of <span>\\(A_7\\)</span> over <span>\\(\\mathbb {Q}[\\sqrt{-7}]\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-023-01963-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Matrices for finite group representations that respect Galois automorphisms\",\"authors\":\"David J. Benson\",\"doi\":\"10.1007/s00013-023-01963-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are given a finite group <i>H</i>, an automorphism <span>\\\\(\\\\tau \\\\)</span> of <i>H</i> of order <i>r</i>, a Galois extension <i>L</i>/<i>K</i> of fields of characteristic zero with cyclic Galois group <span>\\\\(\\\\langle \\\\sigma \\\\rangle \\\\)</span> of order <i>r</i>, and an absolutely irreducible representation <span>\\\\(\\\\rho :H\\\\rightarrow \\\\textsf {GL} (n,L)\\\\)</span> such that the action of <span>\\\\(\\\\tau \\\\)</span> on the character of <span>\\\\(\\\\rho \\\\)</span> is the same as the action of <span>\\\\(\\\\sigma \\\\)</span>. Then the following are equivalent.</p><p>   <span>\\\\(\\\\bullet \\\\)</span> <span>\\\\(\\\\rho \\\\)</span> is equivalent to a representation <span>\\\\(\\\\rho ':H\\\\rightarrow \\\\textsf {GL} (n,L)\\\\)</span> such that the action of <span>\\\\(\\\\sigma \\\\)</span> on the entries of the matrices corresponds to the action of <span>\\\\(\\\\tau \\\\)</span> on <i>H</i>, and</p><p>   <span>\\\\(\\\\bullet \\\\)</span> the induced representation <span>\\\\(\\\\textsf {ind} _{H,H\\\\rtimes \\\\langle \\\\tau \\\\rangle }(\\\\rho )\\\\)</span> has Schur index one; that is, it is similar to a representation over <i>K</i>.</p><p>    As examples, we discuss a three dimensional irreducible representation of <span>\\\\(A_5\\\\)</span> over <span>\\\\(\\\\mathbb {Q}[\\\\sqrt{5}]\\\\)</span> and a four dimensional irreducible representation of the double cover of <span>\\\\(A_7\\\\)</span> over <span>\\\\(\\\\mathbb {Q}[\\\\sqrt{-7}]\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-023-01963-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01963-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01963-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给定了一个有限群 H、H 的一个阶数为 r 的自变态、一个特征为零且具有阶数为 r 的循环伽罗瓦群的域的伽罗瓦扩展 L/K,以及一个绝对不可还原的表示 \(\rho .H\rightarrow \textsf {GL} (n,L) \),使得 \(\tau \)对 \(\rho \)的特征的作用:H\rightarrow \textsf {GL} (n,L)\) 使得 \(\tau \) 对 \(\rho \) 的作用与 \(\sigma \) 的作用相同。那么下面这些就是等价的\(\bullet\) \(\rho\) 等同于一个表示 \(\rho ':H\rightarrow \textsf {GL} (n,L)\) 这样的表示,即 \(\sigma\) 对矩阵项的作用对应于 \(\tau\) 对 H 的作用,并且 \(\bullet\) 的诱导表示 \(\textsf {ind}.具有舒尔指数一;也就是说,它类似于 K 上的表示。作为例子,我们讨论了 \(A_5\) 在 \(\mathbb {Q}[\sqrt{5}]\) 上的三维不可还原表示,以及 \(A_7\) 在 \(\mathbb {Q}[\sqrt{-7}]\) 上的双盖的四维不可还原表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrices for finite group representations that respect Galois automorphisms

We are given a finite group H, an automorphism \(\tau \) of H of order r, a Galois extension L/K of fields of characteristic zero with cyclic Galois group \(\langle \sigma \rangle \) of order r, and an absolutely irreducible representation \(\rho :H\rightarrow \textsf {GL} (n,L)\) such that the action of \(\tau \) on the character of \(\rho \) is the same as the action of \(\sigma \). Then the following are equivalent.

   \(\bullet \) \(\rho \) is equivalent to a representation \(\rho ':H\rightarrow \textsf {GL} (n,L)\) such that the action of \(\sigma \) on the entries of the matrices corresponds to the action of \(\tau \) on H, and

   \(\bullet \) the induced representation \(\textsf {ind} _{H,H\rtimes \langle \tau \rangle }(\rho )\) has Schur index one; that is, it is similar to a representation over K.

    As examples, we discuss a three dimensional irreducible representation of \(A_5\) over \(\mathbb {Q}[\sqrt{5}]\) and a four dimensional irreducible representation of the double cover of \(A_7\) over \(\mathbb {Q}[\sqrt{-7}]\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信