{"title":"调查主动学习在大型协调微积分课程中的影响","authors":"Shay Fuchs, Gurpreet Sahmbi","doi":"10.1007/s40753-024-00234-6","DOIUrl":null,"url":null,"abstract":"<p>Our study investigated the impact of active learning on student learning in a large, first-year, multi-section Calculus for Life sciences course(s). Two cohorts of students in control (traditional lectures) and experimental (active learning) conditions were compared based on achievement on identical test items, administered in a supervised in-person environment. We additionally held focus groups to ascertain student perspectives on active learning. Findings suggest that in both sets of cohorts, students in experimental conditions performed better, on average. Further, students felt that learning this way supported the development of transferable skills, such as work habits, self-directed learning and metacognition. We contend that with the combination of these results, in addition to our context and design, this study offers new evidence and insights into the impact of active learning in tertiary mathematics. We argue that, when implemented properly, active learning methods can improve student performance, even in large-enrollment and multi-section mathematics classes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Impact of Active Learning in Large Coordinated Calculus Courses\",\"authors\":\"Shay Fuchs, Gurpreet Sahmbi\",\"doi\":\"10.1007/s40753-024-00234-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Our study investigated the impact of active learning on student learning in a large, first-year, multi-section Calculus for Life sciences course(s). Two cohorts of students in control (traditional lectures) and experimental (active learning) conditions were compared based on achievement on identical test items, administered in a supervised in-person environment. We additionally held focus groups to ascertain student perspectives on active learning. Findings suggest that in both sets of cohorts, students in experimental conditions performed better, on average. Further, students felt that learning this way supported the development of transferable skills, such as work habits, self-directed learning and metacognition. We contend that with the combination of these results, in addition to our context and design, this study offers new evidence and insights into the impact of active learning in tertiary mathematics. We argue that, when implemented properly, active learning methods can improve student performance, even in large-enrollment and multi-section mathematics classes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40753-024-00234-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40753-024-00234-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the Impact of Active Learning in Large Coordinated Calculus Courses
Our study investigated the impact of active learning on student learning in a large, first-year, multi-section Calculus for Life sciences course(s). Two cohorts of students in control (traditional lectures) and experimental (active learning) conditions were compared based on achievement on identical test items, administered in a supervised in-person environment. We additionally held focus groups to ascertain student perspectives on active learning. Findings suggest that in both sets of cohorts, students in experimental conditions performed better, on average. Further, students felt that learning this way supported the development of transferable skills, such as work habits, self-directed learning and metacognition. We contend that with the combination of these results, in addition to our context and design, this study offers new evidence and insights into the impact of active learning in tertiary mathematics. We argue that, when implemented properly, active learning methods can improve student performance, even in large-enrollment and multi-section mathematics classes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.