海森堡群上超线性抛物方程的柳维尔定理

IF 2.1 2区 数学 Q1 MATHEMATICS
Juncheng Wei, Ke Wu
{"title":"海森堡群上超线性抛物方程的柳维尔定理","authors":"Juncheng Wei, Ke Wu","doi":"10.1515/ans-2023-0119","DOIUrl":null,"url":null,"abstract":"We consider a parabolic nonlinear equation on the Heisenberg group. Applying the Gidas–Spruck type estimates, we prove that under suitable conditions, the equation does not have positive solutions. As an application of the nonexistence result, we provide optimal universal estimates for positive solutions.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"51 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Liouville theorem for superlinear parabolic equations on the Heisenberg group\",\"authors\":\"Juncheng Wei, Ke Wu\",\"doi\":\"10.1515/ans-2023-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a parabolic nonlinear equation on the Heisenberg group. Applying the Gidas–Spruck type estimates, we prove that under suitable conditions, the equation does not have positive solutions. As an application of the nonexistence result, we provide optimal universal estimates for positive solutions.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0119\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了海森堡群上的抛物线非线性方程。应用 Gidas-Spruck 型估计,我们证明在合适的条件下,方程没有正解。作为不存在结果的应用,我们提供了正解的最优普遍估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Liouville theorem for superlinear parabolic equations on the Heisenberg group
We consider a parabolic nonlinear equation on the Heisenberg group. Applying the Gidas–Spruck type estimates, we prove that under suitable conditions, the equation does not have positive solutions. As an application of the nonexistence result, we provide optimal universal estimates for positive solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信