一类保角紧凑爱因斯坦流形的扰动紧凑性和唯一性

IF 2.1 2区 数学 Q1 MATHEMATICS
Sun-Yung Alice Chang, Yuxin Ge, Xiaoshang Jin, Jie Qing
{"title":"一类保角紧凑爱因斯坦流形的扰动紧凑性和唯一性","authors":"Sun-Yung Alice Chang, Yuxin Ge, Xiaoshang Jin, Jie Qing","doi":"10.1515/ans-2023-0124","DOIUrl":null,"url":null,"abstract":"In this paper, we establish compactness results for some classes of conformally compact Einstein metrics defined on manifolds of dimension d ≥ 4. In the special case when the manifold is the Euclidean ball with the unit sphere as the conformal infinity, the existence of such class of metrics has been established in the earlier work of C. R. Graham and J. Lee (“Einstein metrics with prescribed conformal infinity on the ball,” <jats:italic>Adv. Math.</jats:italic>, vol. 87, no. 2, pp. 186–225, 1991). As an application of our compactness result, we derive the uniqueness of the Graham–Lee metrics. As a second application, we also derive some gap theorem, or equivalently, some results of non-existence CCE fill-ins.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"22 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbation compactness and uniqueness for a class of conformally compact Einstein manifolds\",\"authors\":\"Sun-Yung Alice Chang, Yuxin Ge, Xiaoshang Jin, Jie Qing\",\"doi\":\"10.1515/ans-2023-0124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we establish compactness results for some classes of conformally compact Einstein metrics defined on manifolds of dimension d ≥ 4. In the special case when the manifold is the Euclidean ball with the unit sphere as the conformal infinity, the existence of such class of metrics has been established in the earlier work of C. R. Graham and J. Lee (“Einstein metrics with prescribed conformal infinity on the ball,” <jats:italic>Adv. Math.</jats:italic>, vol. 87, no. 2, pp. 186–225, 1991). As an application of our compactness result, we derive the uniqueness of the Graham–Lee metrics. As a second application, we also derive some gap theorem, or equivalently, some results of non-existence CCE fill-ins.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0124\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了定义在维数 d ≥ 4 的流形上的几类保角紧凑爱因斯坦度量的紧凑性结果。在流形是以单位球为保角无穷的欧几里得球的特殊情况下,这类度量的存在已在 C. R. Graham 和 J. Lee 的早期研究中得到证实("球上具有规定保角无穷的爱因斯坦度量",《数学研究》,第 87 卷第 2 期,第 186-225 页,1991 年)。作为紧凑性结果的一个应用,我们推导出了格雷厄姆-李度量的唯一性。作为第二个应用,我们还推导出了一些间隙定理,或者等同于一些不存在 CCE 填充的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perturbation compactness and uniqueness for a class of conformally compact Einstein manifolds
In this paper, we establish compactness results for some classes of conformally compact Einstein metrics defined on manifolds of dimension d ≥ 4. In the special case when the manifold is the Euclidean ball with the unit sphere as the conformal infinity, the existence of such class of metrics has been established in the earlier work of C. R. Graham and J. Lee (“Einstein metrics with prescribed conformal infinity on the ball,” Adv. Math., vol. 87, no. 2, pp. 186–225, 1991). As an application of our compactness result, we derive the uniqueness of the Graham–Lee metrics. As a second application, we also derive some gap theorem, or equivalently, some results of non-existence CCE fill-ins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信