关于函数∫Ωf + ∫Ω*g

IF 2.1 2区 数学 Q1 MATHEMATICS
Qiang Guang, Qi-Rui Li, Xu-Jia Wang
{"title":"关于函数∫Ωf + ∫Ω*g","authors":"Qiang Guang, Qi-Rui Li, Xu-Jia Wang","doi":"10.1515/ans-2023-0105","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of functionals subject to a duality restriction. The functional is of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mi mathvariant=\"script\">J</m:mi> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:msub> <m:mi>f</m:mi> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:mi>g</m:mi> </m:math> <jats:tex-math> $\\mathcal{J}\\left({\\Omega},{{\\Omega}}^{{\\ast}}\\right)={\\int }_{{\\Omega}}f+{\\int }_{{{\\Omega}}^{{\\ast}}}g$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0105_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>, where <jats:italic>f</jats:italic>, <jats:italic>g</jats:italic> are given nonnegative functions in a manifold. The duality is a relation <jats:italic>α</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>y</jats:italic>) ≤ 0 ∀ <jats:italic>x</jats:italic> ∈ Ω, <jats:italic>y</jats:italic> ∈ Ω*, for a suitable function <jats:italic>α</jats:italic>. This model covers several geometric and physical applications. In this paper we review two topological methods introduced in the study of the functional, and discuss possible extensions of the methods to related problems.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"54 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the functional ∫Ωf + ∫Ω*g\",\"authors\":\"Qiang Guang, Qi-Rui Li, Xu-Jia Wang\",\"doi\":\"10.1515/ans-2023-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a class of functionals subject to a duality restriction. The functional is of the form <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <m:mi mathvariant=\\\"script\\\">J</m:mi> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> </m:msub> <m:mi>f</m:mi> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mo>∫</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mrow> <m:mo>*</m:mo> </m:mrow> </m:msup> </m:mrow> </m:msub> <m:mi>g</m:mi> </m:math> <jats:tex-math> $\\\\mathcal{J}\\\\left({\\\\Omega},{{\\\\Omega}}^{{\\\\ast}}\\\\right)={\\\\int }_{{\\\\Omega}}f+{\\\\int }_{{{\\\\Omega}}^{{\\\\ast}}}g$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_ans-2023-0105_ineq_002.png\\\" /> </jats:alternatives> </jats:inline-formula>, where <jats:italic>f</jats:italic>, <jats:italic>g</jats:italic> are given nonnegative functions in a manifold. The duality is a relation <jats:italic>α</jats:italic>(<jats:italic>x</jats:italic>, <jats:italic>y</jats:italic>) ≤ 0 ∀ <jats:italic>x</jats:italic> ∈ Ω, <jats:italic>y</jats:italic> ∈ Ω*, for a suitable function <jats:italic>α</jats:italic>. This model covers several geometric and physical applications. In this paper we review two topological methods introduced in the study of the functional, and discuss possible extensions of the methods to related problems.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0105\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0105","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一类受对偶性限制的函数。函数的形式为 J ( Ω , Ω * ) = ∫ Ω f + ∫ Ω * g $mathcal{J}left({\Omega},{\{Omega}}^{{\ast}}\right)={int }_{{\Omega}}f+{\int }_{{{\Omega}}^{{\ast}}}g$ ,其中 f、g 是流形中给定的非负函数。对于合适的函数 α,对偶性是一种关系 α(x, y) ≤ 0 ∀ x∈ Ω, y∈ Ω*。 这一模型涵盖了多种几何和物理应用。在本文中,我们回顾了在函数研究中引入的两种拓扑方法,并讨论了这些方法在相关问题上的可能扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the functional ∫Ωf + ∫Ω*g
In this paper, we consider a class of functionals subject to a duality restriction. The functional is of the form J ( Ω , Ω * ) = Ω f + Ω * g $\mathcal{J}\left({\Omega},{{\Omega}}^{{\ast}}\right)={\int }_{{\Omega}}f+{\int }_{{{\Omega}}^{{\ast}}}g$ , where f, g are given nonnegative functions in a manifold. The duality is a relation α(x, y) ≤ 0 ∀ x ∈ Ω, y ∈ Ω*, for a suitable function α. This model covers several geometric and physical applications. In this paper we review two topological methods introduced in the study of the functional, and discuss possible extensions of the methods to related problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信