刚性可磁化粒子悬浮液的存在结果

IF 1.1 2区 数学 Q1 MATHEMATICS
Grigor Nika, Bogdan Vernescu
{"title":"刚性可磁化粒子悬浮液的存在结果","authors":"Grigor Nika, Bogdan Vernescu","doi":"10.1007/s43037-024-00328-y","DOIUrl":null,"url":null,"abstract":"<p>We establish the existence of a weak solution for a strongly coupled, nonlinear Stokes–Maxwell system, originally proposed by Nika and Vernescu (Z Angew Math Phys 71(1):1–19, 2020) in the three-dimensional setting. The model effectively couples the Stokes equation with the quasi-static Maxwell’s equations through the Lorentz force and the Maxwell stress tensor. The proof of existence is premised on: (i) the augmented variational formulation of Maxwell’s equations, (ii) the definition of a new function space for the magnetic induction and the verification of a Poincar’e-type inequality, and (iii) the deployment of the Altman–Shinbrot fixed point theorem when the magnetic Reynolds number, <span>\\({\\text {R}_{\\text {m}}},\\)</span> is small.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An existence result for a suspension of rigid magnetizable particles\",\"authors\":\"Grigor Nika, Bogdan Vernescu\",\"doi\":\"10.1007/s43037-024-00328-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the existence of a weak solution for a strongly coupled, nonlinear Stokes–Maxwell system, originally proposed by Nika and Vernescu (Z Angew Math Phys 71(1):1–19, 2020) in the three-dimensional setting. The model effectively couples the Stokes equation with the quasi-static Maxwell’s equations through the Lorentz force and the Maxwell stress tensor. The proof of existence is premised on: (i) the augmented variational formulation of Maxwell’s equations, (ii) the definition of a new function space for the magnetic induction and the verification of a Poincar’e-type inequality, and (iii) the deployment of the Altman–Shinbrot fixed point theorem when the magnetic Reynolds number, <span>\\\\({\\\\text {R}_{\\\\text {m}}},\\\\)</span> is small.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-024-00328-y\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-024-00328-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了强耦合非线性斯托克斯-麦克斯韦系统的弱解的存在性,该系统最初由 Nika 和 Vernescu(Z Angew Math Phys 71(1):1-19, 2020)在三维环境中提出。该模型通过洛伦兹力和麦克斯韦应力张量将斯托克斯方程与准静态麦克斯韦方程有效地耦合在一起。存在性证明的前提是:(i) 麦克斯韦方程的增强变分公式;(ii) 为磁感应强度定义一个新的函数空间并验证 Poincar'e 型不等式;(iii) 当磁场雷诺数较小时,利用 Altman-Shinbrot 定点定理(\({\text {R}_{\text {m}}}, \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An existence result for a suspension of rigid magnetizable particles

An existence result for a suspension of rigid magnetizable particles

We establish the existence of a weak solution for a strongly coupled, nonlinear Stokes–Maxwell system, originally proposed by Nika and Vernescu (Z Angew Math Phys 71(1):1–19, 2020) in the three-dimensional setting. The model effectively couples the Stokes equation with the quasi-static Maxwell’s equations through the Lorentz force and the Maxwell stress tensor. The proof of existence is premised on: (i) the augmented variational formulation of Maxwell’s equations, (ii) the definition of a new function space for the magnetic induction and the verification of a Poincar’e-type inequality, and (iii) the deployment of the Altman–Shinbrot fixed point theorem when the magnetic Reynolds number, \({\text {R}_{\text {m}}},\) is small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信