{"title":"基于 PCA-PSO-BP 模型的矿井水质评价","authors":"Jiaqi Wang, Yanli Huang","doi":"10.2166/wcc.2023.604","DOIUrl":null,"url":null,"abstract":"<div><div data- reveal-group-><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwc-d-23-00504gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\"data-reveal\"><div><img alt=\"graphic\" data-src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\" path-from-xml=\"jwc-d-23-00504gf01.tif\" src=\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry.</p>","PeriodicalId":510893,"journal":{"name":"Journal of Water & Climate Change","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of mine water quality based on the PCA–PSO–BP model\",\"authors\":\"Jiaqi Wang, Yanli Huang\",\"doi\":\"10.2166/wcc.2023.604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div data- reveal-group-><div><img alt=\\\"graphic\\\" data-src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\" path-from-xml=\\\"jwc-d-23-00504gf01.tif\\\" src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\"/><div>View largeDownload slide</div></div></div><div content- data-reveal=\\\"data-reveal\\\"><div><img alt=\\\"graphic\\\" data-src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\" path-from-xml=\\\"jwc-d-23-00504gf01.tif\\\" src=\\\"https://iwa.silverchair-cdn.com/iwa/content_public/journal/jwcc/15/2/10.2166_wcc.2023.604/1/m_jwc-d-23-00504gf01.png?Expires=1712293747&Signature=cdkhDn184QGHrnWNg5j7kSM1pqd30XxWG1apY6cI2ISrFqZlt6fky6LIGXZG1SN3uWVlvLodQfvrhL7d~2KuuW7WLE~NV6n16ojDUZc~laxswag3WlD7tREBNcRdpqrTcWeKC35iS-zammDfDjpxKDO5wvOIlZZGGEhwtUqc1FKoWR8gQHFKel77OmztUnvrdKkE5bUlDcvGqzeX0dF03h4RJKI1GuwDkxrrBbqgwSy4R4IzV-bMQTncxJtPimUm3L5Ji8CK-RPJXTJ3zLL98RgkTHVnB0Fa2VRsIFajoJcYhzK9n~5nXjnnKd3xln4F8Is-u-aYp8Sr4YQaf6KZAA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA\\\"/><div>View largeDownload slide</div></div><i> </i><span>Close modal</span></div></div><p>To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry.</p>\",\"PeriodicalId\":510893,\"journal\":{\"name\":\"Journal of Water & Climate Change\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water & Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water & Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
View largeDownload slideView largeDownload slide Close modal为了提高中国西部干旱地区矿区对矿井水的综合利用,缓解当前缺水问题,本文引入了矿井水质评价的智能优化算法和神经网络,提出了主成分分析(PCA)-粒子群优化(PSO)-反向传播(BP)矿井水质评价模型。该模型首先利用 PCA 识别影响矿井水质的主要因素,然后基于 PSO 算法增强 BP 神经网络的最优权值和阈值,创建了具有 9 个输入层、9 个隐藏层和 1 个输出层的 PCA-PSO-BP 评价模型。此外,以石草村矿为例,结果表明 PCA-PSO-BP 模型具有准确的矿井水质评价结果,预测精度达到 86.8255%。这充分体现了 PSO 方法对 BP 神经网络改进的优越性。这项研究不仅为评估和预测矿区水质提供了一个新颖的理论框架,还为最先进的神经网络和优化算法在煤矿行业的广泛应用奠定了基础。
Evaluation of mine water quality based on the PCA–PSO–BP model
View largeDownload slide
View largeDownload slide
Close modal
To enhance the mining area's overall use of mine water in the arid area of Western China and mitigate the current water scarcity problem, this paper introduces an intelligent optimization algorithm and neural network for mine water quality evaluation and proposes a principal component analysis (PCA)–particle swarm optimization (PSO)–back propagation (BP) mine water quality evaluation model. Firstly, the model uses PCA to identify the primary factors affecting mine water quality, then enhances the optimal weights and thresholds of the BP neural network based on the PSO algorithm, and the PCA–PSO–BP evaluation model with nine input layers, nine hidden layers, and one output layer is created. In addition, using the Shicaocun Mine as an example, the results demonstrate that the PCA–PSO–BP model has accurate mine water quality evaluation results, and the prediction accuracy reached 86.8255%. This exemplifies the PSO method's superiority to the BP neural network improvement. This study not only offers a novel theoretical framework for assessing and forecasting water quality in mining regions, but it also sets the stage for the possible broad use of state-of-the-art neural networks and optimization algorithms in the coal mining industry.