{"title":"通过最大抽样条目偏差对随机块模型进行双样本检验","authors":"Qianyong Wu, Jiang Hu","doi":"10.1007/s42952-024-00260-9","DOIUrl":null,"url":null,"abstract":"<p>The paper discusses a statistical problem related to testing for differences between two networks with community structures. While existing methods have been proposed, they encounter challenges and do not perform effectively when the networks become sparse. We propose a test statistic that combines a method proposed by Wu and Hu (2024) and a resampling process. Specifically, the proposed test statistic proves effective under the condition that the community-wise edge probability matrices have entries of order <span>\\(\\Omega (\\log n/n)\\)</span>, where <i>n</i> denotes the network size. We derive the asymptotic null distribution of the test statistic and provide a guarantee of asymptotic power against the alternative hypothesis. To evaluate the performance of the proposed test statistic, we conduct simulations and provide real data examples. The results indicate that the proposed test statistic performs well for both dense and sparse networks.</p>","PeriodicalId":49992,"journal":{"name":"Journal of the Korean Statistical Society","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-sample test of stochastic block models via the maximum sampling entry-wise deviation\",\"authors\":\"Qianyong Wu, Jiang Hu\",\"doi\":\"10.1007/s42952-024-00260-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper discusses a statistical problem related to testing for differences between two networks with community structures. While existing methods have been proposed, they encounter challenges and do not perform effectively when the networks become sparse. We propose a test statistic that combines a method proposed by Wu and Hu (2024) and a resampling process. Specifically, the proposed test statistic proves effective under the condition that the community-wise edge probability matrices have entries of order <span>\\\\(\\\\Omega (\\\\log n/n)\\\\)</span>, where <i>n</i> denotes the network size. We derive the asymptotic null distribution of the test statistic and provide a guarantee of asymptotic power against the alternative hypothesis. To evaluate the performance of the proposed test statistic, we conduct simulations and provide real data examples. The results indicate that the proposed test statistic performs well for both dense and sparse networks.</p>\",\"PeriodicalId\":49992,\"journal\":{\"name\":\"Journal of the Korean Statistical Society\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Statistical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-024-00260-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Statistical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00260-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了一个与测试两个具有群落结构的网络之间差异有关的统计问题。虽然现有的方法已经提出,但它们遇到了挑战,当网络变得稀疏时,这些方法不能有效地发挥作用。我们提出了一种结合了 Wu 和 Hu(2024 年)提出的方法和重采样过程的检验统计量。具体来说,我们提出的测试统计量在以下条件下证明有效:社区边缘概率矩阵的阶数为(\Omega (\log n/n)\),其中 n 表示网络规模。我们推导出了检验统计量的渐近零分布,并提供了针对备择假设的渐近功率保证。为了评估所提出的检验统计量的性能,我们进行了模拟并提供了实际数据示例。结果表明,所提出的检验统计量对密集和稀疏网络都有良好的表现。
Two-sample test of stochastic block models via the maximum sampling entry-wise deviation
The paper discusses a statistical problem related to testing for differences between two networks with community structures. While existing methods have been proposed, they encounter challenges and do not perform effectively when the networks become sparse. We propose a test statistic that combines a method proposed by Wu and Hu (2024) and a resampling process. Specifically, the proposed test statistic proves effective under the condition that the community-wise edge probability matrices have entries of order \(\Omega (\log n/n)\), where n denotes the network size. We derive the asymptotic null distribution of the test statistic and provide a guarantee of asymptotic power against the alternative hypothesis. To evaluate the performance of the proposed test statistic, we conduct simulations and provide real data examples. The results indicate that the proposed test statistic performs well for both dense and sparse networks.
期刊介绍:
The Journal of the Korean Statistical Society publishes research articles that make original contributions to the theory and methodology of statistics and probability. It also welcomes papers on innovative applications of statistical methodology, as well as papers that give an overview of current topic of statistical research with judgements about promising directions for future work. The journal welcomes contributions from all countries.