阿尔及利亚西北部月降水量预测人工神经网络:Oranie-Chott-Chergui 流域案例研究

Ahcene Bouach
{"title":"阿尔及利亚西北部月降水量预测人工神经网络:Oranie-Chott-Chergui 流域案例研究","authors":"Ahcene Bouach","doi":"10.2166/wcc.2024.494","DOIUrl":null,"url":null,"abstract":"<p>The north-west region of Algeria, pivotal for the nation's water resources and agriculture, faces challenges from changing precipitation patterns due to climate change. In response, our study introduces a robust forecasting tool utilizing artificial neural networks (ANNs) to predict monthly precipitation over a 12-month horizon. We meticulously evaluated two normalization methods, ANN-SS and ANN-MM, and assessed four distinct approaches for selecting input variables (no selection, ANN-WO, ANN-CO, and ANN-VE) to optimize model performance. Our research contributes significantly to the field by addressing a critical gap in understanding the impact of evolving precipitation patterns on water resources. Among the innovations, this study uniquely focuses on medium-term precipitation forecasting, an aspect often marginalized in previous research. Noteworthy outcomes include correlation coefficients of 0.48 and 0.49 during the validation phase, particularly with the Endogen variables and correlation-optimized models using Min-Max normalization. Additionally, the Min-Max normalized technique achieves an impressive 67.71% accuracy in predicting the hydrological situation based on the Standard Precipitation Index.</p>","PeriodicalId":510893,"journal":{"name":"Journal of Water & Climate Change","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks for monthly precipitation prediction in north-west Algeria: a case study in the Oranie-Chott-Chergui basin\",\"authors\":\"Ahcene Bouach\",\"doi\":\"10.2166/wcc.2024.494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The north-west region of Algeria, pivotal for the nation's water resources and agriculture, faces challenges from changing precipitation patterns due to climate change. In response, our study introduces a robust forecasting tool utilizing artificial neural networks (ANNs) to predict monthly precipitation over a 12-month horizon. We meticulously evaluated two normalization methods, ANN-SS and ANN-MM, and assessed four distinct approaches for selecting input variables (no selection, ANN-WO, ANN-CO, and ANN-VE) to optimize model performance. Our research contributes significantly to the field by addressing a critical gap in understanding the impact of evolving precipitation patterns on water resources. Among the innovations, this study uniquely focuses on medium-term precipitation forecasting, an aspect often marginalized in previous research. Noteworthy outcomes include correlation coefficients of 0.48 and 0.49 during the validation phase, particularly with the Endogen variables and correlation-optimized models using Min-Max normalization. Additionally, the Min-Max normalized technique achieves an impressive 67.71% accuracy in predicting the hydrological situation based on the Standard Precipitation Index.</p>\",\"PeriodicalId\":510893,\"journal\":{\"name\":\"Journal of Water & Climate Change\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water & Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water & Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔及利亚西北部地区是该国水资源和农业的关键地区,面临着气候变化导致降水模式不断变化的挑战。为此,我们的研究利用人工神经网络(ANN)推出了一种稳健的预测工具,用于预测 12 个月内的月降水量。我们对 ANN-SS 和 ANN-MM 两种归一化方法进行了细致评估,并对四种不同的输入变量选择方法(无选择、ANN-WO、ANN-CO 和 ANN-VE)进行了评估,以优化模型性能。我们的研究为该领域做出了重大贡献,填补了在理解不断变化的降水模式对水资源的影响方面的一个重要空白。在各项创新中,本研究独树一帜地关注中期降水预测,而这在以往的研究中往往被边缘化。值得注意的成果包括验证阶段的相关系数分别为 0.48 和 0.49,特别是内源变量和使用 Min-Max 归一化的相关优化模型。此外,Min-Max 归一化技术根据标准降水指数预测水文状况的准确率达到了令人印象深刻的 67.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural networks for monthly precipitation prediction in north-west Algeria: a case study in the Oranie-Chott-Chergui basin

The north-west region of Algeria, pivotal for the nation's water resources and agriculture, faces challenges from changing precipitation patterns due to climate change. In response, our study introduces a robust forecasting tool utilizing artificial neural networks (ANNs) to predict monthly precipitation over a 12-month horizon. We meticulously evaluated two normalization methods, ANN-SS and ANN-MM, and assessed four distinct approaches for selecting input variables (no selection, ANN-WO, ANN-CO, and ANN-VE) to optimize model performance. Our research contributes significantly to the field by addressing a critical gap in understanding the impact of evolving precipitation patterns on water resources. Among the innovations, this study uniquely focuses on medium-term precipitation forecasting, an aspect often marginalized in previous research. Noteworthy outcomes include correlation coefficients of 0.48 and 0.49 during the validation phase, particularly with the Endogen variables and correlation-optimized models using Min-Max normalization. Additionally, the Min-Max normalized technique achieves an impressive 67.71% accuracy in predicting the hydrological situation based on the Standard Precipitation Index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信