{"title":"停泊优先权对效率的影响","authors":"Xi Lin, Xinyue Pu, Xiwen Bai","doi":"10.1287/trsc.2022.0411","DOIUrl":null,"url":null,"abstract":"Facing intensified interport competition in the global container shipping market, an increasing number of ports choose to offer berthing priority for carriers to increase their attractiveness. This study is the first to theoretically analyze the efficiency impacts of such prioritization. Specifically, this study models the steady-state dynamics for each terminal in a biterminal port as a prioritized queuing system. We explore the equilibrated shipping flow distribution and resulting total system cost (i.e., bunker consumption cost and waiting time cost) with and without priority provision, along with their major analytical properties. Then, we examine the “second-order” effects of these priority schemes on just-in-time (JIT) arrivals, an increasingly popular green port management tool. Specifically, we investigate how the equilibrium state associated with JIT arrivals could change with priority berthing. These analyses generate some interesting results, including (1) the total system cost increases or remains unchanged when a priority scheme is implemented under a symmetric port with equal service capacities for both terminals; (2) under the asymmetric biterminal case, however, it is also possible that berth prioritization could reduce the total system cost, and such phenomenon occurs only if the terminal which offers prioritization owns larger service capacity; (3) the results indicate that the “price of prioritization” could reach [Formula: see text] in port operation when the berth loading is heavy, implying that priority provision may significantly harm the operational efficiency; and (4) lastly, priority provision has a negative second-order effect on JIT strategies in a symmetric port, and such negative effect may neutralize the positive ones. Those theoretical results are validated by numerical experiments, and some of them are also supported by empirical data. The results provide important practical implications for the decision making of the port (or terminal) agencies.Funding: This work was supported by the National Natural Science Foundation of China [Grants 72371143 and 72188101].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0411 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"18 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Efficiency Impacts of Berthing Priority Provision\",\"authors\":\"Xi Lin, Xinyue Pu, Xiwen Bai\",\"doi\":\"10.1287/trsc.2022.0411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing intensified interport competition in the global container shipping market, an increasing number of ports choose to offer berthing priority for carriers to increase their attractiveness. This study is the first to theoretically analyze the efficiency impacts of such prioritization. Specifically, this study models the steady-state dynamics for each terminal in a biterminal port as a prioritized queuing system. We explore the equilibrated shipping flow distribution and resulting total system cost (i.e., bunker consumption cost and waiting time cost) with and without priority provision, along with their major analytical properties. Then, we examine the “second-order” effects of these priority schemes on just-in-time (JIT) arrivals, an increasingly popular green port management tool. Specifically, we investigate how the equilibrium state associated with JIT arrivals could change with priority berthing. These analyses generate some interesting results, including (1) the total system cost increases or remains unchanged when a priority scheme is implemented under a symmetric port with equal service capacities for both terminals; (2) under the asymmetric biterminal case, however, it is also possible that berth prioritization could reduce the total system cost, and such phenomenon occurs only if the terminal which offers prioritization owns larger service capacity; (3) the results indicate that the “price of prioritization” could reach [Formula: see text] in port operation when the berth loading is heavy, implying that priority provision may significantly harm the operational efficiency; and (4) lastly, priority provision has a negative second-order effect on JIT strategies in a symmetric port, and such negative effect may neutralize the positive ones. Those theoretical results are validated by numerical experiments, and some of them are also supported by empirical data. The results provide important practical implications for the decision making of the port (or terminal) agencies.Funding: This work was supported by the National Natural Science Foundation of China [Grants 72371143 and 72188101].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0411 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.0411\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0411","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
On the Efficiency Impacts of Berthing Priority Provision
Facing intensified interport competition in the global container shipping market, an increasing number of ports choose to offer berthing priority for carriers to increase their attractiveness. This study is the first to theoretically analyze the efficiency impacts of such prioritization. Specifically, this study models the steady-state dynamics for each terminal in a biterminal port as a prioritized queuing system. We explore the equilibrated shipping flow distribution and resulting total system cost (i.e., bunker consumption cost and waiting time cost) with and without priority provision, along with their major analytical properties. Then, we examine the “second-order” effects of these priority schemes on just-in-time (JIT) arrivals, an increasingly popular green port management tool. Specifically, we investigate how the equilibrium state associated with JIT arrivals could change with priority berthing. These analyses generate some interesting results, including (1) the total system cost increases or remains unchanged when a priority scheme is implemented under a symmetric port with equal service capacities for both terminals; (2) under the asymmetric biterminal case, however, it is also possible that berth prioritization could reduce the total system cost, and such phenomenon occurs only if the terminal which offers prioritization owns larger service capacity; (3) the results indicate that the “price of prioritization” could reach [Formula: see text] in port operation when the berth loading is heavy, implying that priority provision may significantly harm the operational efficiency; and (4) lastly, priority provision has a negative second-order effect on JIT strategies in a symmetric port, and such negative effect may neutralize the positive ones. Those theoretical results are validated by numerical experiments, and some of them are also supported by empirical data. The results provide important practical implications for the decision making of the port (or terminal) agencies.Funding: This work was supported by the National Natural Science Foundation of China [Grants 72371143 and 72188101].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0411 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.