Gang Yang, Yu Wang, Dezhao Qin, Rui Zhu, Qingpeng Han
{"title":"基于 HMM 的飞机环境控制系统涡扇滚动轴承故障诊断方法","authors":"Gang Yang, Yu Wang, Dezhao Qin, Rui Zhu, Qingpeng Han","doi":"10.1155/2024/5582169","DOIUrl":null,"url":null,"abstract":"In response to the high-noise, nonlinear, and nonstationary characteristics of vibration signals from aircraft environmental control system (ECS) turbofan rolling bearings, this paper proposes a diagnostic method for the degree of ECS turbofan bearing faults based on the Hidden Markov Model (HMM). Experimental results demonstrate that HMM can accurately diagnose and predict faults in ECS turbofan rolling bearings. The HMM method enhances diagnostic accuracy, and its effectiveness and feasibility in fault diagnosis based on different rolling bearing fault instances are elaborated. By employing the HMM model to establish precise models from decomposed dynamic data, it successfully identifies faults such as the fracture of the bearing cage under biased load conditions, although its performance in recognizing overheating faults is suboptimal.","PeriodicalId":21915,"journal":{"name":"Shock and Vibration","volume":"1129 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMM-Based Method for Aircraft Environmental Control System Turbofan Rolling Bearing Fault Diagnosis\",\"authors\":\"Gang Yang, Yu Wang, Dezhao Qin, Rui Zhu, Qingpeng Han\",\"doi\":\"10.1155/2024/5582169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the high-noise, nonlinear, and nonstationary characteristics of vibration signals from aircraft environmental control system (ECS) turbofan rolling bearings, this paper proposes a diagnostic method for the degree of ECS turbofan bearing faults based on the Hidden Markov Model (HMM). Experimental results demonstrate that HMM can accurately diagnose and predict faults in ECS turbofan rolling bearings. The HMM method enhances diagnostic accuracy, and its effectiveness and feasibility in fault diagnosis based on different rolling bearing fault instances are elaborated. By employing the HMM model to establish precise models from decomposed dynamic data, it successfully identifies faults such as the fracture of the bearing cage under biased load conditions, although its performance in recognizing overheating faults is suboptimal.\",\"PeriodicalId\":21915,\"journal\":{\"name\":\"Shock and Vibration\",\"volume\":\"1129 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shock and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5582169\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/5582169","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
HMM-Based Method for Aircraft Environmental Control System Turbofan Rolling Bearing Fault Diagnosis
In response to the high-noise, nonlinear, and nonstationary characteristics of vibration signals from aircraft environmental control system (ECS) turbofan rolling bearings, this paper proposes a diagnostic method for the degree of ECS turbofan bearing faults based on the Hidden Markov Model (HMM). Experimental results demonstrate that HMM can accurately diagnose and predict faults in ECS turbofan rolling bearings. The HMM method enhances diagnostic accuracy, and its effectiveness and feasibility in fault diagnosis based on different rolling bearing fault instances are elaborated. By employing the HMM model to establish precise models from decomposed dynamic data, it successfully identifies faults such as the fracture of the bearing cage under biased load conditions, although its performance in recognizing overheating faults is suboptimal.
期刊介绍:
Shock and Vibration publishes papers on all aspects of shock and vibration, especially in relation to civil, mechanical and aerospace engineering applications, as well as transport, materials and geoscience. Papers may be theoretical or experimental, and either fundamental or highly applied.