关于泊松回归函数的一种非参数估计的一些特性

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Metrika Pub Date : 2024-03-01 DOI:10.1007/s00184-024-00955-3
P. Babilua, E. Nadaraya
{"title":"关于泊松回归函数的一种非参数估计的一些特性","authors":"P. Babilua, E. Nadaraya","doi":"10.1007/s00184-024-00955-3","DOIUrl":null,"url":null,"abstract":"<p>The paper considers the nonparametric Poisson regression problem with a regular equidistant design on the unit interval. The nonparametric estimation of the Poisson regression function is studied. The uniform consistency conditions are established and the limit theorems are proved for continuous functionals on <span>\\(C[a,1-a]\\)</span>, <span>\\(0&lt;a&lt;\\frac{1}{2}\\)</span> .</p>","PeriodicalId":49821,"journal":{"name":"Metrika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some properties of one nonparametric estimate of poisson regression function\",\"authors\":\"P. Babilua, E. Nadaraya\",\"doi\":\"10.1007/s00184-024-00955-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper considers the nonparametric Poisson regression problem with a regular equidistant design on the unit interval. The nonparametric estimation of the Poisson regression function is studied. The uniform consistency conditions are established and the limit theorems are proved for continuous functionals on <span>\\\\(C[a,1-a]\\\\)</span>, <span>\\\\(0&lt;a&lt;\\\\frac{1}{2}\\\\)</span> .</p>\",\"PeriodicalId\":49821,\"journal\":{\"name\":\"Metrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-024-00955-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-024-00955-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是单位区间上有规则等距设计的非参数泊松回归问题。研究了泊松回归函数的非参数估计。对于 \(C[a,1-a]\), \(0<a<\frac{1}{2}\) 上的连续函数,建立了统一一致性条件并证明了极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some properties of one nonparametric estimate of poisson regression function

The paper considers the nonparametric Poisson regression problem with a regular equidistant design on the unit interval. The nonparametric estimation of the Poisson regression function is studied. The uniform consistency conditions are established and the limit theorems are proved for continuous functionals on \(C[a,1-a]\), \(0<a<\frac{1}{2}\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metrika
Metrika 数学-统计学与概率论
CiteScore
1.50
自引率
14.30%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信