{"title":"基于胆固醇的 B 环 2H-Pyran:利用密度函数理论研究合成和反应机理","authors":"Priyanka -, Himanshi Kumar, Kamlesh Sharma","doi":"10.2174/0115701786287116240222045947","DOIUrl":null,"url":null,"abstract":": The steroidal B-ring 2H-pyran 2 is synthesized by reacting steroidal B-ring α,β- unsaturated ketone 1 and 2-cyano-N-methylacetamide by refluxing for 18 h in methanol in the presence of a catalyst, i.e., chitosan. The product is obtained with a yield of 67%. The structure of the final product 2 is confirmed by utilizing IR, Mass, 13C and 1H NMR spectra. The reaction mechanism of the steroidal pyran ring formation is explored in this paper. The reaction pathway is described by using FMO analysis and relative energies of starting material, intermediate, and transition states, calculated by using the theoretical method, i.e., DFT with B3LYP/6-31G(d). It is found that two intermediates are formed throughout the reaction, which undergo a respective transition state (TS1 and TS2). The energy barrier of each step of the reaction is also calculated. It is also concluded that the reaction is endothermic. The green synthetic method reported in this study would be very useful for the synthetic and medicinal chemists involved in the synthesis of biologically important pyran ring-containing heterocyclic compounds.","PeriodicalId":18116,"journal":{"name":"Letters in Organic Chemistry","volume":"109 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cholesterol-Based B-Ring 2H-Pyran: Synthesis and Reaction Mechanism by Using Density Functional Theoretical Study\",\"authors\":\"Priyanka -, Himanshi Kumar, Kamlesh Sharma\",\"doi\":\"10.2174/0115701786287116240222045947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The steroidal B-ring 2H-pyran 2 is synthesized by reacting steroidal B-ring α,β- unsaturated ketone 1 and 2-cyano-N-methylacetamide by refluxing for 18 h in methanol in the presence of a catalyst, i.e., chitosan. The product is obtained with a yield of 67%. The structure of the final product 2 is confirmed by utilizing IR, Mass, 13C and 1H NMR spectra. The reaction mechanism of the steroidal pyran ring formation is explored in this paper. The reaction pathway is described by using FMO analysis and relative energies of starting material, intermediate, and transition states, calculated by using the theoretical method, i.e., DFT with B3LYP/6-31G(d). It is found that two intermediates are formed throughout the reaction, which undergo a respective transition state (TS1 and TS2). The energy barrier of each step of the reaction is also calculated. It is also concluded that the reaction is endothermic. The green synthetic method reported in this study would be very useful for the synthetic and medicinal chemists involved in the synthesis of biologically important pyran ring-containing heterocyclic compounds.\",\"PeriodicalId\":18116,\"journal\":{\"name\":\"Letters in Organic Chemistry\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701786287116240222045947\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701786287116240222045947","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Cholesterol-Based B-Ring 2H-Pyran: Synthesis and Reaction Mechanism by Using Density Functional Theoretical Study
: The steroidal B-ring 2H-pyran 2 is synthesized by reacting steroidal B-ring α,β- unsaturated ketone 1 and 2-cyano-N-methylacetamide by refluxing for 18 h in methanol in the presence of a catalyst, i.e., chitosan. The product is obtained with a yield of 67%. The structure of the final product 2 is confirmed by utilizing IR, Mass, 13C and 1H NMR spectra. The reaction mechanism of the steroidal pyran ring formation is explored in this paper. The reaction pathway is described by using FMO analysis and relative energies of starting material, intermediate, and transition states, calculated by using the theoretical method, i.e., DFT with B3LYP/6-31G(d). It is found that two intermediates are formed throughout the reaction, which undergo a respective transition state (TS1 and TS2). The energy barrier of each step of the reaction is also calculated. It is also concluded that the reaction is endothermic. The green synthetic method reported in this study would be very useful for the synthetic and medicinal chemists involved in the synthesis of biologically important pyran ring-containing heterocyclic compounds.
期刊介绍:
Aims & Scope
Letters in Organic Chemistry publishes original letters (short articles), research articles, mini-reviews and thematic issues based on mini-reviews and short articles, in all areas of organic chemistry including synthesis, bioorganic, medicinal, natural products, organometallic, supramolecular, molecular recognition and physical organic chemistry. The emphasis is to publish quality papers rapidly by taking full advantage of latest technology for both submission and review of the manuscripts.
The journal is an essential reading for all organic chemists belonging to both academia and industry.