具有非线性边界条件的非局部问题的多重解决方案

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jie Liu, Qing Miao
{"title":"具有非线性边界条件的非局部问题的多重解决方案","authors":"Jie Liu, Qing Miao","doi":"10.1155/2024/3621001","DOIUrl":null,"url":null,"abstract":"In this article, we consider a class of nonlocal <i>p</i>(<i>x</i>)-Laplace equations with nonlinear boundary conditions. When the nonlinear boundary involves critical exponents, using the concentration compactness principle, mountain pass lemma, and fountain theorem, we can prove the existence and multiplicity of solutions.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":"55 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Solutions of a Nonlocal Problem with Nonlinear Boundary Conditions\",\"authors\":\"Jie Liu, Qing Miao\",\"doi\":\"10.1155/2024/3621001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider a class of nonlocal <i>p</i>(<i>x</i>)-Laplace equations with nonlinear boundary conditions. When the nonlinear boundary involves critical exponents, using the concentration compactness principle, mountain pass lemma, and fountain theorem, we can prove the existence and multiplicity of solutions.\",\"PeriodicalId\":55177,\"journal\":{\"name\":\"Discrete Dynamics in Nature and Society\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Dynamics in Nature and Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/3621001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/3621001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一类具有非线性边界条件的非局部 p(x)-Laplace 方程。当非线性边界涉及临界指数时,利用集中紧凑性原理、山口稃和喷泉定理,我们可以证明解的存在性和多重性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Solutions of a Nonlocal Problem with Nonlinear Boundary Conditions
In this article, we consider a class of nonlocal p(x)-Laplace equations with nonlinear boundary conditions. When the nonlinear boundary involves critical exponents, using the concentration compactness principle, mountain pass lemma, and fountain theorem, we can prove the existence and multiplicity of solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Dynamics in Nature and Society
Discrete Dynamics in Nature and Society 综合性期刊-数学跨学科应用
CiteScore
3.00
自引率
0.00%
发文量
598
审稿时长
3 months
期刊介绍: The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信